Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 8:S2090-1232(25)00154-7.
doi: 10.1016/j.jare.2025.03.013. Online ahead of print.

SRSF9 mediates oncogenic RNA splicing of SLC37A4 via liquid-liquid phase separation to promote oral cancer progression

Affiliations
Free article

SRSF9 mediates oncogenic RNA splicing of SLC37A4 via liquid-liquid phase separation to promote oral cancer progression

Qiu Peng et al. J Adv Res. .
Free article

Abstract

Introduction: Oral cancer represents a significant proportion of head and neck malignancies, accounting for approximately 3 % of all malignant tumors worldwide.

Objectives: Alternative splicing (AS), a post-transcriptional regulatory mechanism, is increasingly linked to cancer development. The precise impact of AS on oral cancer progression is not well understood.

Methods: Bioinformatics, semi-quantitative RT-PCR, and minigene reporter system to detect the skipping of SLC37A4 exon 7 in oral cancer. FRAP, live cell immunofluorescence demonstrates that SRSF9 can undergo liquid-liquid phase separation (LLPS). In vivo and in vitro experiments with subcutaneous graft tumors, CCK8, EdU, transwell, and others were used to detect the effects of SRSF9 and its induced SLC37A4-S isoforms on the malignant phenotype of oral cancer cells.

Results: Our investigation revealed a multitude of aberrant alternative splicing events within head and neck tumor tissues, most notably the pronounced skipping of exon 7 in the SLC37A4 gene. This splicing anomaly leads to the production of a truncated isoform, SLC37A4-S, which is associated with a poor prognosis and significantly augments the proliferation and metastatic potential of oral cancer cells relative to the wild-type isoform, SLC37A4-L. Mechanically, SRSF9 may play a regulatory role in the aberrant splicing of SLC37A4. Furthermore, SRSF9 is capable of undergoing LLPS, a process driven by its arginine-serine-rich (RS) domain. Disruption of SRSF9 LLPS through the use of inhibitors or mutants effectively prevents its regulatory influence on the splicing of SLC37A4. Significantly, our research demonstrates that both SRSF9 and its regulated splicing isoforms of SLC37A4-S contribute to cisplatin chemotherapy resistance in oral cancer cells.

Conclusion: This study elucidates the mechanism by which SRSF9 phase separation mediates splicing in oral cancer, thereby establishing a basis for considering SRSF9 and its associated SLC37A4-S isoforms as potential therapeutic targets for oral cancer treatment.

Keywords: Alternative splicing; Liquid–liquid phase separation; Oral cancer; SLC37A4; SRSF9.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources