Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr;31(4):751-760.
doi: 10.3201/eid3104.241820. Epub 2024 Mar 10.

Antiviral Susceptibility of Influenza A(H5N1) Clade 2.3.2.1c and 2.3.4.4b Viruses from Humans, 2023-2024

Antiviral Susceptibility of Influenza A(H5N1) Clade 2.3.2.1c and 2.3.4.4b Viruses from Humans, 2023-2024

Philippe Noriel Q Pascua et al. Emerg Infect Dis. 2025 Apr.

Abstract

During 2023-2024, highly pathogenic avian influenza A(H5N1) viruses from clade 2.3.2.1c caused human infections in Cambodia and from clade 2.3.4.4b caused human infections in the Americas. We assessed the susceptibility of those viruses to approved and investigational antiviral drugs. Except for 2 viruses isolated from Cambodia, all viruses were susceptible to M2 ion channel-blockers in cell culture-based assays. In the neuraminidase inhibition assay, all viruses displayed susceptibility to neuraminidase inhibitor antiviral drugs oseltamivir, zanamivir, peramivir, laninamivir, and AV5080. Oseltamivir was ≈4-fold less potent at inhibiting the neuraminidase activity of clade 2.3.4.4b than clade 2.3.2.1c viruses. All viruses were susceptible to polymerase inhibitors baloxavir and tivoxavir and to polymerase basic 2 inhibitor pimodivir with 50% effective concentrations in low nanomolar ranges. Because drug-resistant viruses can emerge spontaneously or by reassortment, close monitoring of antiviral susceptibility of H5N1 viruses collected from animals and humans by using sequence-based analysis supplemented with phenotypic testing is essential.

Keywords: antimicrobial resistance; antiviral; drug resistance; influenza; influenza A(H5N1); polymerase inhibitors; respiratory infections; viruses; zoonoses; zoonotic infections.

PubMed Disclaimer

References

    1. Garg S, Reinhart K, Couture A, Kniss K, Davis CT, Kirby MK, et al. Highly pathogenic avian influenza a(h5n1) virus infections in humans. N Engl J Med. 2025;392:843–54. 10.1056/NEJMoa2414610 - DOI - PubMed
    1. Bevins SN, Shriner SA, Cumbee JC Jr, Dilione KE, Douglass KE, Ellis JW, et al. Intercontinental movement of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4 virus to the United States, 2021. Emerg Infect Dis. 2022;28:1006–11. 10.3201/eid2805.220318 - DOI - PMC - PubMed
    1. Elsmo EJ, Wünschmann A, Beckmen KB, Broughton-Neiswanger LE, Buckles EL, Ellis J, et al. Highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b infections in wild terrestrial mammals, United States, 2022. Emerg Infect Dis. 2023;29:2451–60. 10.3201/eid2912.230464 - DOI - PMC - PubMed
    1. Leguia M, Garcia-Glaessner A, Muñoz-Saavedra B, Juarez D, Barrera P, Calvo-Mac C, et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat Commun. 2023;14:5489. 10.1038/s41467-023-41182-0 - DOI - PMC - PubMed
    1. Youk S, Torchetti MK, Lantz K, Lenoch JB, Killian ML, Leyson C, et al. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021-April 2022. Virology. 2023;587:109860. 10.1016/j.virol.2023.109860 - DOI - PubMed

MeSH terms

LinkOut - more resources