Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 10;16(1):2351.
doi: 10.1038/s41467-025-56175-4.

Variation in wood density across South American tropical forests

Martin J P Sullivan  1   2 Oliver L Phillips  3 David Galbraith  3 Everton Almeida  4 Edmar Almeida de Oliveira  5 Jarcilene Almeida  6 Esteban Álvarez Dávila  7 Luciana F Alves  8 Ana Andrade  9 Luiz Aragão  10 Alejandro Araujo-Murakami  11 Eric Arets  12 Luzmila Arroyo  13 Omar Aurelio Melo Cruz  14 Fabrício Baccaro  15 Timothy R Baker  3 Olaf Banki  16 Christopher Baraloto  17 Jos Barlow  18 Jorcely Barroso  19 Erika Berenguer  18   20 Lilian Blanc  21   22 Cecilia Blundo  23 Damien Bonal  24 Frans Bongers  25 Kauane Maiara Bordin  26 Roel J W Brienen  3 Igor S Broggio  27   28 Benoit Burban  29 George Cabral  6 José Luís Camargo  30 Domingos Cardoso  31   32 Maria Antonia Carniello  33 Wendeson Castro  34 Haroldo Cavalcante de Lima  31 Larissa Cavalheiro  35   36 Sabina Cerruto Ribeiro  37 Sonia Cesarina Palacios Ramos  38 Victor Chama Moscoso  39 Jerôme Chave  40 Fernanda Coelho  3   41 James A Comiskey  42   43 Fernando Cornejo Valverde  44 Flávia Costa  45 Italo Antônio Cotta Coutinho  46 Antonio Carlos Lola da Costa  47 Marcelo Brilhante de Medeiros  48 Jhon Del Aguila Pasquel  49   50 Géraldine Derroire  51 Kyle G Dexter  52   53   54 Mat Disney  55 Mário M do Espírito Santo  56 Tomas F Domingues  57 Aurélie Dourdain  51 Alvaro Duque  58 Cristabel Durán Rangel  59 Fernando Elias  60   61   62 Adriane Esquivel-Muelbert  63 William Farfan-Rios  64 Sophie Fauset  65 Ted Feldpausch  66 G Wilson Fernandes  67 Joice Ferreira  68 Yule Roberta Ferreira Nunes  69 João Carlos Gomes Figueiredo  56 Karina Garcia Cabreara  70 Roy Gonzalez  71 Lionel Hernández  72 Rafael Herrera  73 Eurídice N Honorio Coronado  74 Walter Huaraca Huasco  20 Mariana Iguatemy  75 Carlos A Joly  76 Michelle Kalamandeen  3 Timothy Killeen  77 Joice Klipel  78 Bente Klitgaard  79 Susan G Laurance  80   81 William F Laurance  80   81 Aurora Levesley  3 Simon L Lewis  3   55 Maurício Lima Dan  82 Gabriela Lopez-Gonzalez  3 William Magnusson  83 Yadvinder Malhi  20 Lucio Malizia  84 Augustina Malizia  23 Angelo Gilberto Manzatto  85   86 Jose Luis Marcelo Peña  87 Beatriz S Marimon  88 Ben Hur Marimon Junior  88 Johanna Andrea Martínez-Villa  89 Simone Matias Reis  37   88 Thiago Metzker  90 William Milliken  91 Abel Monteagudo-Mendoza  92 Peter Moonlight  93   94 Paulo S Morandi  5 Pamela Moser  95 Sandra C Müller  78 Marcelo Nascimento  96 Daniel Negreiros  67 Adriano Nogueira Lima  45 Percy Núñez Vargas  97 Washington L Oliveira  95 Walter Palacios  98 Nadir C Pallqui Camacho  3   39 Alexander Parada Gutierrez  11 Guido Pardo Molina  99 Karla Maria Pedra de Abreu  100 Marielos Peña-Claros  25 Pablo José Francisco Pena Rodrigues  101 R Toby Pennington  94   102 Georgia C Pickavance  3 John Pipoly  103   104 Nigel C A Pitman  105 Maureen Playfair  106 Aline Pontes-Lopes  10 Lourens Poorter  25 Nayane Cristina Candida Dos Santos Prestes  5 Hirma Ramírez-Angulo  107 Maxime Réjou-Méchain  108 Carlos Reynel Rodriguez  109 Gonzalo Rivas-Torres  110 Priscyla M S Rodrigues  111 Domingos de Jesus Rodrigues  35 Thaiane Rodrigues de Sousa  45 José Roberto Rodrigues Pinto  112 Gina M Rodriguez M  113 Katherine Roucoux  74 Kalle Ruokolainen  114 Casey M Ryan  115 Norma Salinas Revilla  116 Rafael Salomão  117   118 Rubens M Santos  119 Tiina Sarkinen  120 Andressa Scabin  121 Rodrigo Scarton Bergamin  122 Juliana Schietti  45 Milton Serpa de Meira Junior  112 Julio Serrano  123 Miles Silman  70 Richarlly C Silva  124 Camila V J Silva  18   41   125 Jhonathan Oliveria Silva  111 Marcos Silveira  126 Marcelo F Simon  48 Yahn Carlos Soto-Shareva  92 Priscila Souza  127 Rodolfo Souza  128   129 Tereza Sposito  130 Joey Talbot  131 Hans Ter Steege  16   132 John Terborgh  133 Raquel Thomas  134 Marisol Toledo  135 Armando Torres-Lezama  107 William Trujillo  136 Peter van der Hout  137 Maria das Dores Magalhães Veloso  138 Simone A Vieira  139 Emilio Vilanova  140 Jeanneth M Villalobos Cayo  141   142 Dora M Villela  143 Laura Jessica Viscarra  11 Vincent A Vos  144 Verginia Wortel  145 Francoise Yoko Ishida  81   146 Pieter A Zuidema  25 Joeri A Zwerts  147   148
Affiliations

Variation in wood density across South American tropical forests

Martin J P Sullivan et al. Nat Commun. .

Abstract

Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Variation in wood density across South American tropical forests.
a Location of forest inventory plots where wood density was quantified. b Variation in basal-area weighted wood density between regions. Colours in a relate to regions in (b). N = 981 plots (Lowland-NW = 182 plots, Lowland-SW = 168, East-central Amazon = 205, Guiana Shield = 123, Brazilian Shield = 119, Atlantic forest = 69, Andes = 71, Dry forests = 44). Black points show mean values in each region estimated by a linear model with wood density as the response variable and region as the explanatory variable; lines show 95% confidence intervals from that model.
Fig. 2
Fig. 2. Contribution of explanatory variables to models of spatial variation in wood density.
Global Shapley additive explanations (SHAP values) have been calculated for random forest (RF, blue) and generalised additive models (GAM, green) fitted with either just environmental or spatial variables (env/ spatial, open circles) or to both environmental and spatial variables (both, filled circles). Higher SHAP values indicate a greater contribution of a feature to model predictions. Variables are ordered on the x-axis based on their mean SHAP value across models.
Fig. 3
Fig. 3. Predicted spatial variation in basal-area weighted wood density across tropical and sub-tropical South America at 1km resolution.
Ensemble predictions averaging the six input models are shown. Predictions for individual models are presented in Fig. S2, with inter-model uncertainty in Fig. S3. Forested areas outside the area of applicability of model predictions are shown in grey – see Fig. S2 for model predictions without this exclusion, and Fig. S7 for alternative definitions of areas of model applicability.

References

    1. Marvin, D. C. & Asner, G. P. Spatially explicit analysis of field inventories for national forest carbon monitoring. Carbon Balance Manag.11, 9 (2016). - PMC - PubMed
    1. Berenguer, E. et al. Seeing the woods through the saplings: Using wood density to assess the recovery of human-modified Amazonian forests. J. Ecol.106, 2190–2203 (2018).
    1. Poorter, L. et al. Functional recovery of secondary tropical forests. Proc. Natl Acad. Sci.118, e2003405118 (2021). - PMC - PubMed
    1. Bustamante, M. M. C. et al. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob. Change Biol.22, 92–109 (2016). - PubMed
    1. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature579, 80–87 (2020). - PMC - PubMed