Caki-1 Spheroids as a Renal Model for Studying Free Fatty Acid-Induced Lipotoxicity
- PMID: 40072078
- PMCID: PMC11899473
- DOI: 10.3390/cells14050349
Caki-1 Spheroids as a Renal Model for Studying Free Fatty Acid-Induced Lipotoxicity
Abstract
Lipotoxicity, resulting from the buildup of excess lipids in non-adipose tissues, is increasingly recognized as a major contributor to the progression of kidney disease, highlighting the need for alternative models to assess its effects on renal cells. The main aim of this study was to investigate the usefulness of Caki-1, a human proximal tubule (PT) and renal cell carcinoma (RCC) representative cell line, as a 3D model system for studying free fatty acid-induced PT lipotoxicity. Caki-1 spheroids were generated and maintained on ultra-low attachment plates and characterized regarding time-dependent morphology changes. In optimal 3D culture conditions, Caki-1 cells formed well-defined large compact spheroids with uniform morphology, good circularity, and increased diameter from days 4-12. Chronic exposure to saturated palmitate resulted in dose- and time-dependent spheroid disintegration and cell death, including dispersed and flattened spheroid morphology, with increased dead cells in the peripheral layers and decreased spheroid core. Moreover, palmitate-treated spheroids showed a significant increase in cleaved poly(ADP-ribose) polymerase (PARP) and active caspase-3. Palmitate-induced PARP cleavage, as well as endoplasmic reticulum (ER) stress and autophagy dysfunction, were blunted by triacsin C, an inhibitor of long-chain acyl-CoA synthetases. In addition, co-incubation with unsaturated oleate prevented palmitate-induced spheroid disintegration and apoptotic cell death in Caki-1 3D culture. While fatty acid overload upregulated lipid droplet protein perilipin 2 in Caki-1 cells, knockdown of perilipin 2 by siRNAs resulted in an exacerbation of palmitate-induced cell death. Together, these results indicate that the 3D Caki-1 spheroid model is a simple and reproducible in vitro system for studying renal lipotoxicity and lipid metabolism that gives useful readouts at the molecular, cellular, and multicellular levels.
Keywords: ER stress; autophagy; lipid droplet; lipotoxicity; tubular epithelial cells.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Francis A., Harhay M.N., Ong A.C.M., Tummalapalli S.L., Ortiz A., Fogo A.B., Fliser D., Roy-Chaudhury P., Fontana M., Nangaku M., et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024;20:473–485. doi: 10.1038/s41581-024-00820-6. - DOI - PubMed
-
- Brenner B.M., Cooper M.E., de Zeeuw D., Keane W.F., Mitch W.E., Parving H.H., Remuzzi G., Snapinn S.M., Zhang Z., Shahinfar S., et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001;345:861–869. doi: 10.1056/NEJMoa011161. - DOI - PubMed
-
- Liu D., Lv L.L. New Understanding on the Role of Proteinuria in Progression of Chronic Kidney Disease. Adv. Exp. Med. Biol. 2019;1165:487–500. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
