Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 12;17(789):eadn2635.
doi: 10.1126/scitranslmed.adn2635. Epub 2025 Mar 12.

Itaconate restrains acute proinflammatory activation of microglia after traumatic brain injury in mice

Affiliations

Itaconate restrains acute proinflammatory activation of microglia after traumatic brain injury in mice

Ning Liu et al. Sci Transl Med. .

Abstract

Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 (Irg1)], is a pivotal metabolic regulator in immune cells, particularly in macrophages. Because microglia are macrophages of the brain parenchyma, the IRG1/itaconate pathway likely modulates microglial inflammatory responses. In this study, we explored the role of the IRG1/itaconate pathway in regulating microglial bioenergetics and inflammatory activation post-TBI using a mouse controlled cortical impact (CCI) model. We isolated microglia before and 4 and 12 hours after TBI and observed a swift but transient increase in glycolysis coupled with a prolonged disruption of mitochondrial metabolism after injury. Despite an up-regulation of Irg1 expression, itaconate in microglia declined after TBI. Microglia-specific Irg1 gene knockout (Irg1-Mi-KO) exacerbated metabolic changes, intensified proinflammatory activation and neurodegeneration, and worsened certain long-term neurological deficits. Supplementation with 4-octyl itaconate (OI) reinstated the use and oxidative metabolism of glucose, glutamine, and fatty acid, thereby enhancing microglial bioenergetics post-TBI. OI supplementation also attenuated proinflammatory activation and neurodegeneration and improved long-term neurological outcomes. These results suggest that therapeutically targeting the itaconate pathway could improve microglial energy metabolism and neurological outcomes after TBI.

PubMed Disclaimer

References

MeSH terms