Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul;104(7):763-773.
doi: 10.1177/00220345251316472. Epub 2025 Mar 12.

IL6-Dependent PIEZO1 Activation Promotes M1-Mediated Orthodontic Root Resorption via CXCL12/CXCR4

Affiliations

IL6-Dependent PIEZO1 Activation Promotes M1-Mediated Orthodontic Root Resorption via CXCL12/CXCR4

Z H Zhang et al. J Dent Res. 2025 Jul.

Abstract

Orthodontic root resorption (ORR) is a common yet significant complication of orthodontic treatment, largely driven by interactions between periodontal ligament cells (PDLCs) and M1 macrophages. Despite the clinical relevance of ORR, the role of mechanosensitive ion channels in PDLC-mediated ORR and the underlying mechanisms regulating inflammatory cell recruitment remain poorly understood. Here, we identified PIEZO1 as a critical mechanosensitive ion channel that modulates monocyte recruitment and ORR. Using in vivo models treated with the PIEZO1 activator Yoda1 and inhibitor AAV-shPiezo1, we demonstrated that PIEZO1 activation promoted the recruitment of Ly6Chi inflammatory monocytes and exacerbated ORR. In contrast, PIEZO1 inhibition attenuated ORR and the accumulation of M1 macrophages. Mechanistically, PIEZO1 positively regulated the C-X-C motif chemokine 12 (CXCL12) and its receptor, C-X-C chemokine receptor type 4 (CXCR4). Blocking the CXCL12/CXCR4 axis using the CXCR4 antagonist AMD3100 significantly alleviated ORR, reversed M1 macrophage accumulation, and mitigated the recruitment of CD11b+Ly6Chi monocytes. Transwell migration assays with application of the PIEZO1 activator Yoda1 and PIEZO1 inhibitor GsMTX4 consistently confirmed the PIEZO1/CXCL12/CXCR4 axis as a key driver of PDLC-monocyte interactions. Notably, PIEZO1 overactivation was linked to excessive IL-6 production, and IL-6 deficiency inhibited the activation of PIEZO1 induced by Yoda1, leading to attenuation of ORR, M1 macrophage accumulation, and CXCL12/CXCR4 axis activation. Collectively, these findings reveal PIEZO1 in PDLCs as a pivotal modulator of inflammatory monocyte recruitment via the CXCL12/CXCR4 axis in ORR, with IL-6 playing an essential role in PIEZO1 activation. This study provides new insights into the molecular crosstalk between PDLCs and macrophages, offering potential therapeutic targets for mitigating ORR in orthodontic patients.

Keywords: macrophage activation; mechanotransduction; monocyte; orthodontics; periodontal ligament.

PubMed Disclaimer

Conflict of interest statement

Declaration of Conflicting InterestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

LinkOut - more resources