Visible-Light-Driven Catalytic Dehalogenation of Trichloroacetic Acid and α-Halocarbonyl Compounds: Multiple Roles of Copper
- PMID: 40078408
- PMCID: PMC11894595
- DOI: 10.1021/acscatal.4c07845
Visible-Light-Driven Catalytic Dehalogenation of Trichloroacetic Acid and α-Halocarbonyl Compounds: Multiple Roles of Copper
Abstract
Herein, we report the reaction development and mechanistic studies of visible-light-driven Cu-catalyzed dechlorination of trichloroacetic acid for the highly selective formation of monochloroacetic acid. Visible-light-driven transition metal catalysis via an inner-sphere pathway features the dual roles of transition metal species in photoexcitation and substrate activation steps, and a detailed mechanistic understanding of their roles is crucial for the further development of light-driven catalysis. This catalytic method, which features environmentally desired ascorbic acid as the hydrogen atom source and water/ethanol as the solvent, can be further applied to the dehalogenation of a variety of halocarboxylic acids and amides. Spectroscopic, X-ray crystallographic, and kinetic studies have revealed the detailed mechanism of the roles of copper in photoexcitation, thermal activation of the first C-Cl bond, and excited-state activation of the second C-Cl bond via excited-state chlorine atom transfer.
© 2025 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






References
-
- Visible Light Photocatalysis in Organic Chemistry; Stephenson C. R. J.; Yoon T. P.; MacMillan D. W. C., Eds.; Wiley: Hoboken, NJ, 2018.
- Strieth-Kalthoff F.; James M. J.; Teders M.; Pitzer L.; Glorius F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 2018, 47, 7190–7202. 10.1039/C8CS00054A. - DOI - PubMed
- Glaser F.; Kerzig C.; Wenger O. S. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications Methods.. Angew. Chem. Int. Ed. 2020, 59, 10266–10284. 10.1002/anie.201915762. - DOI - PubMed
- Yu X. Y.; Chen J. R.; Xiao W. J. Visible Light-Driven Radical-Mediated C-C Bond Cleavage/Functionalization in Organic Synthesis. Chem. Rev. 2021, 121, 506–561. 10.1021/acs.chemrev.0c00030. - DOI - PubMed
- Chan A. Y.; Perry I. B.; Bissonnette N. B.; Buksh B. F.; Edwards G. A.; Frye L. I.; Garry O. L.; Lavagnino M. N.; Li B. X.; Liang Y.; Mao E.; Millet A.; Oakley J. V.; Reed N. L.; Sakai H. A.; Seath C. P.; MacMillan D. W. C. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem. Rev. 2022, 122, 1485–1542. 10.1021/acs.chemrev.1c00383. - DOI - PubMed
- Holmberg-Douglas N.; Nicewicz D. A. Photoredox-Catalyzed C-H Functionalization Reactions. Chem. Rev. 2022, 122, 1925–2016. 10.1021/acs.chemrev.1c00311. - DOI - PMC - PubMed
- Pitre S. P.; Overman L. E. Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chem. Rev. 2022, 122, 1717–1751. 10.1021/acs.chemrev.1c00247. - DOI - PubMed
- Li J.; Zhang D.; Hu Z. Ligand-Enabled “Two-in-One” Metallaphotocatalytic Cross Couplings. ACS Catal. 2025, 15, 1635–1654. 10.1021/acscatal.4c07128. - DOI
-
- Ting S. I.; Garakyaraghi S.; Taliaferro C. M.; Shields B. J.; Scholes G. D.; Castellano F. N.; Doyle A. G. 3d-d Excited States of Ni(II) Complexes Relevant to Photoredox Catalysis: Spectroscopic Identification and Mechanistic Implications. J. Am. Chem. Soc. 2020, 142, 5800–5810. 10.1021/jacs.0c00781. - DOI - PubMed
- Cagan D. A.; Stroscio G. D.; Cusumano A. Q.; Hadt R. G. Multireference Description of Nickel-Aryl Homolytic Bond Dissociation Processes in Photoredox Catalysis. J. Phys. Chem. A 2020, 124, 9915–9922. 10.1021/acs.jpca.0c08646. - DOI - PubMed
-
- Treacy S. M.; Rovis T. Copper Catalyzed C(sp3)- H Bond Alkylation via Photoinduced Ligand-to-Metal Charge Transfer. J. Am. Chem. Soc. 2021, 143, 2729–2735. 10.1021/jacs.1c00687. - DOI - PMC - PubMed
- Xu P.; Lopez-Rojas P.; Ritter T. Radical Decarboxylative Carbometalation of Benzoic Acids: A Solution to Aromatic Decarboxylative Fluorination. J. Am. Chem. Soc. 2021, 143, 5349–5354. 10.1021/jacs.1c02490. - DOI - PubMed
- Li Q. Y.; Gockel S. N.; Lutovsky G. A.; DeGlopper K. S.; Baldwin N. J.; Bundesmann M. W.; Tucker J. W.; Bagley S. W.; Yoon T. P. Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(II) carboxylates. Nat. Chem. 2022, 14, 94–99. 10.1038/s41557-021-00834-8. - DOI - PMC - PubMed
- Dow N. W.; Pedersen P. S.; Chen T. Q.; Blakemore D. C.; Dechert-Schmitt A. M.; Knauber T.; MacMillan D. W. C. Decarboxylative Borylation and Cross-Coupling of (Hetero)aryl Acids Enabled by Copper Charge Transfer Catalysis. J. Am. Chem. Soc. 2022, 144, 6163–6172. 10.1021/jacs.2c01630. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources