Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 25;19(11):11049-11057.
doi: 10.1021/acsnano.4c16960. Epub 2025 Mar 13.

Pinning-Induced Microdroplet Self-Transport

Affiliations

Pinning-Induced Microdroplet Self-Transport

Hyeongyun Cha et al. ACS Nano. .

Abstract

Droplets are prone to adhere or "pin" on solid surfaces which contain unavoidable micro- and nanoscale surface defects formed through chemical and topographical heterogeneity. To initiate droplet motion, potential energy gradients, surface energy gradients, or external energy input are needed. Here, in contrast to established wisdom, we show that properly designed surface heterogeneity can promote microdroplet self-transport without any external force or anisotropy. In the presence of topological defects, microdroplets can take advantage of contact line pinning to generate contact line and corresponding contact angle asymmetry, leading to spontaneous motion over distances 10-20 times larger than the droplet radius. The outcomes of this work present an alternative pathway for taking advantage of intrinsic surface heterogeneity to achieve droplet mobility in a range of applications, where passive droplet motion is desired.

Keywords: condensation; droplet; evaporation; hydrophobic surface; nanostructure; self-transport.

PubMed Disclaimer