Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 15:690:137332.
doi: 10.1016/j.jcis.2025.137332. Epub 2025 Mar 13.

Calcium peroxide functionalized mesoporous polydopamine nanoparticles triggered calcium overload for synergistic tumor gas/photothermal therapy

Affiliations

Calcium peroxide functionalized mesoporous polydopamine nanoparticles triggered calcium overload for synergistic tumor gas/photothermal therapy

Zhen Liu et al. J Colloid Interface Sci. .

Abstract

Cancer remains a significant global health challenge due to its high mortality rates and the limitations of conventional therapies, which are often associated with severe side effects and limited efficacy. Calcium (Ca2+) overload therapy has emerged as a promising strategy for inducing tumor cell apoptosis. However, existing methods that rely on direct Ca2+ delivery often face limited efficacy due to tumor adaptation mechanisms. In this study, we developed a multifunctional nanoparticle system (MLCH NPs) that synergistically combines Ca2+ overload, gas therapy (GT), and photothermal therapy (PTT). This nanoparticle system was based on mesoporous polydopamine (MPDA) nanoparticles loaded with l-arginine (LA) and calcium peroxide (CaO2), with hyaluronic acid (HA) modification to ensure tumor targeting and protect CaO2 from premature degradation. In the tumor microenvironment (TME), MLCH NPs released Ca2+, hydrogen peroxide (H2O2), and nitric oxide (NO), creating a self-sustaining Ca2+-H2O2-NO cycle that induced oxidative stress, mitochondrial damage, and sustained Ca2+ overload, leading to tumor cell apoptosis. The nanoparticles also harnessed the photothermal effect under 808 nm near-infrared irradiation to amplify NO and Ca2+ release, enhancing oxidative stress and sensitizing tumor cells. Both in vitro and in vivo studies confirmed that MLCH NPs significantly suppressed tumor progression through the synergistic effects of Ca2+ overload, GT, and PTT. This study proposes a novel platform for Ca2+/NO co-delivery and offers a promising approach for enhancing tumor therapies based on Ca2+ overload.

Keywords: Calcium overload; Gas therapy; Multifunctional nanoparticle system; Nitric oxide; Photothermal therapy.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources