Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May:208:106874.
doi: 10.1016/j.nbd.2025.106874. Epub 2025 Mar 14.

Developmental alterations of indirect-pathway medium spiny neurons in mouse models of Huntington's disease

Affiliations
Free article

Developmental alterations of indirect-pathway medium spiny neurons in mouse models of Huntington's disease

Margaux Lebouc et al. Neurobiol Dis. 2025 May.
Free article

Abstract

Huntington's disease (HD) is a complex neurodegenerative disorder with cognitive and motor symptoms that typically manifest in adulthood. However, embryonic brain development impairments leading to cortical defects in HD mutation carriers has been shown recently supporting a neurodevelopmental component in HD. Despite HD is primarily recognized as a striatal pathology, developmental alterations in this structure, particularly during the early postnatal period, remain poorly understood. To fill this gap, we examined striatal development in newborn R6/1 mice. We found that D2 receptor-expressing indirect-pathway medium spiny neurons (D2-MSNs) present in the matrix striatal compartment undergo early morphological and electrophysiological maturation. Altered electrophysiological properties were also observed in newborn CAG140 mice. Additionally, we also observed a D2-MSN-selective reduction in glutamatergic cortico-striatal transmission at the beginning of the second postnatal week as well as a reduced projection of D2-MSNs onto the GPe at birth in R6/1 mice. All these alterations were transient with the circuit normalizing after the second postnatal week. These results identify a compartment- and cell-type specific defect in D2-MSNs maturation, which can contribute in their latter vulnerability, as this cell-type is the first to degenerate in HD during adulthood.

Keywords: Electrophysiology; Glutamatergic transmission; Huntingtin; Neuronal excitability; Neuronal morphology; Striatal development.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

MeSH terms