Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr;90(4):106471.
doi: 10.1016/j.jinf.2025.106471. Epub 2025 Mar 14.

Circulating lncRNAs as biomarkers for severe dengue using a machine learning approach

Affiliations
Free article

Circulating lncRNAs as biomarkers for severe dengue using a machine learning approach

Rodolfo Katz et al. J Infect. 2025 Apr.
Free article

Abstract

Objectives: Dengue virus (DENV) infection is a significant global health concern, causing severe morbidity and mortality. While many cases present as a mild febrile illness, some progress to life-threatening severe dengue (SD). Early intervention is essential to improve outcomes, but current predictive methods lack specificity, burdening healthcare systems in endemic regions. Circulating long non-coding RNAs (lncRNAs) have emerged as stable and promising biomarkers. This study explored the use of lncRNAs as predictive markers for SD.

Methods: Differential expression and qPCR arrays were employed to identify lncRNAs associated with SD. Candidate lncRNAs were validated, and their plasma levels were measured in a cohort of Vietnamese dengue patients (n =377) and healthy controls (n=128) at admission. Machine learning algorithms were applied to predict the probability of SD progression.

Results: The predictive model demonstrated high sensitivity and specificity, with an area under the curve (AUC) of 0.98 (95% CI: 0.96-1.0). At admission, it accurately identified 17 of 18 patients who later died as high-risk, compared to traditional warning signs, which flagged only 9 of these cases.

Conclusions: Our findings suggest that this panel of lncRNAs has the potential to predict SD, which could help reduce healthcare burden and improve patient management in endemic countries.

Keywords: Dengue virus; Dengue warning signs; Long non-coding RNAs; Machine learning; Severe dengue.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources