Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 Mar 3:2025.03.01.640648.
doi: 10.1101/2025.03.01.640648.

Regulation of Female Reproductive Aging by the Spag17 Gene

Regulation of Female Reproductive Aging by the Spag17 Gene

Valerie Ericsson et al. bioRxiv. .

Abstract

Reproductive aging in females is characterized by a decline in oocyte quantity and quality, as well as uterine and cervical dysfunction that contributes to infertility and pregnancy complications. To investigate mechanisms underlying reproductive aging, we explored the contribution of Spag17 , a cilia-related gene associated with tissue homeostasis and fibrosis. Spag17 was expressed throughout the female reproductive tract; however, its expression declined with age in ovarian tissue, while high expression levels were observed in the cervix of young females during cervical tissue remodeling in the pre- and post-parturition periods. Loss of Spag17 in mice resulted in impaired fertility, obstructed labor, and maternal death. This phenotype was associated with accelerated ovarian aging, increased fibrosis, and cervical stiffness, further complicating parturition. At the molecular level, Spag17 loss activated key aging-associated pathways, including proinflammatory, profibrotic, and senescence signaling, suggesting that SPAG17 may be a critical player in female reproductive aging.

Teaser: Spag17 is a key modulator of female reproductive aging.

PubMed Disclaimer

Publication types

LinkOut - more resources