Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 29;13(9):2320-2331.
doi: 10.1039/d4bm01683a.

Self-targeted nanosystem for enhanced chemodynamic cancer therapy

Affiliations

Self-targeted nanosystem for enhanced chemodynamic cancer therapy

Kanwal Asif et al. Biomater Sci. .

Abstract

Chemodynamic therapy (CDT) could have a significant potential for advancing cancer treatment via the utilization of Fenton and Fenton-like reactions, which produce toxic reactive species. Nonetheless, the efficacy of CDT is constrained by the limited availability of catalyst ions capable of decomposing pre-existing intracellular H2O2 and generating reactive oxygen species (ROS) necessary to achieve a therapeutic response. To address these limitations, a tailored strategy has been developed to enhance the efficacy of Fenton-like reactions to eradicate selectively cancer cells. This innovative approach involves the utilization of dual metal cations (Zn2+, Fe2+) within zinc nitroprusside (ZnNP) material. Remarkably, this method takes advantage of the acidic conditions prevalent in tumors, thus eliminating the need for external stimuli. Through these advancements, the tailored approach exhibits the potential to specifically target and eliminate cancer cells, overcoming the mentioned limitations. A simple mixing technique was utilized to synthesize ZnNP, which was structurally and morphologically characterized. Furthermore, extensive in vitro investigations were conducted to assess its anti-tumoral mechanism of action. ZnNP exhibits a remarkable capability to increase intracellular H2O2 within cells. This process leads to the generation of various reactive species, including hydroxyl (˙OH) and superoxide (O2˙-) radicals, and peroxynitrite (ONOO-), which act as apoptotic inducers specifically targeting cancer cells. Cellular uptake studies have shown that ZnNP enters the lysosomes, evades degradation, and takes advantage of their acidic pH environment to significantly increase the production of ROS. These findings are further supported by the activation of multiple oxidative genes. Furthermore, the biocompatibility of ZnNP has been demonstrated in ex vivo models using healthy liver cells. Notably, ZnNP exhibited therapeutic effectiveness in high-grade serous ovarian cancer (HGSOC) patient-derived tumor organoids (PDTO), further confirming its potential as a therapeutic agent. The present study highlights the therapeutic potential of ZnNP as a generator of multiple ROS via a Fenton-like reaction. This research offers a promising therapeutic approach for CDT application in combatting HGSOC, a highly aggressive and life-threatening cancer.

PubMed Disclaimer

LinkOut - more resources