Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2025 Apr 24:153:114480.
doi: 10.1016/j.intimp.2025.114480. Epub 2025 Mar 18.

Comparison of in-vitro immunomodulatory capacity between large and small apoptotic bodies from human bone marrow mesenchymal stromal cells

Affiliations
Free article
Comparative Study

Comparison of in-vitro immunomodulatory capacity between large and small apoptotic bodies from human bone marrow mesenchymal stromal cells

Jiemin Wang et al. Int Immunopharmacol. .
Free article

Abstract

Background: Mesenchymal stromal cell (MSC) apoptosis is essential for their therapeutic effects, including immunomodulation. Previous studies have shown that MSC-derived apoptotic bodies (ApoBDs) also possess immunomodulatory properties. However, compared to small extracellular vesicles, the preparation, characterization, and biological properties of ApoBDs remain underexplored.

Results: ApoBDs were isolated from the conditioned medium of staurosporine-induced apoptotic human MSCs and categorized into large (∼700 nm) and small (∼500 nm) groups. Both types expressed CD90, CD44, and CD73, with low levels of PD-L1, CD11b, and HLA-DR, mirroring their parental MSCs. Functional assays revealed that both ApoBDs inhibited allogeneic T-cell proliferation, with large ApoBDs demonstrating superior efficacy. In macrophage co-culture experiments, both ApoBDs polarized M1 macrophages toward an M2-like phenotype, with large ApoBDs more effectively upregulating CD163 expression. Additionally, both ApoBDs suppressed the proliferation of murine primary T cells. Furthermore, large ApoBDs exhibited enhanced macrophage uptake, as confirmed by flow cytometry and immunocytochemistry. Importantly, no cytotoxicity was observed for either ApoBD type following staurosporine treatment.

Conclusions: Staurosporine-induced ApoBDs are non-cytotoxic and exhibit significant immunomodulatory potential in vitro. Large ApoBDs are more effective than small ApoBDs in T-cell suppression and M2 macrophage polarization, suggesting their potential as an alternative to MSC-based therapies in future studies.

Keywords: Apoptotic bodies (ApoBDs); Immunomodulation; Large extracellular vesicles; Macrophage polarization; Mesenchymal stromal cells (MSCs); Staurosporine; T-cell proliferation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types