Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2025 Mar 19;3(3):CD011926.
doi: 10.1002/14651858.CD011926.pub3.

Molecular assays for the diagnosis of sepsis in neonates: a diagnostic test accuracy review

Affiliations
Meta-Analysis

Molecular assays for the diagnosis of sepsis in neonates: a diagnostic test accuracy review

Thomas H Dierikx et al. Cochrane Database Syst Rev. .

Abstract

Background: Microbial cultures for diagnosis of neonatal sepsis have low sensitivity and reporting delay. Advances in molecular microbiology have fostered new molecular assays that are rapid and may improve neonatal outcomes.

Objectives: To assess the diagnostic accuracy of various molecular methods for the diagnosis of culture-positive bacterial and fungal sepsis in neonates and to explore heterogeneity among studies by analyzing subgroups classified by gestational age and type of sepsis onset and compare molecular tests with one another.

Search methods: We searched CENTRAL, MEDLINE, Embase and trial registries in August 2023. We checked reference lists of included studies and systematic reviews where subject matter related to the intervention or population examined in this review.

Selection criteria: We included studies that were prospective or retrospective, cohort or cross-sectional design, which evaluated molecular assays (index test) in neonates with suspected sepsis in comparison with microbial cultures (reference standard).

Data collection and analysis: Two review authors independently screened studies, extracted data and assessed the methodological quality of the studies. We performed meta-analyses using the bivariate model and entered data into Review Manager.

Main results: Seventy-four studies were eligible for inclusion, of which 68 studies provided data for meta-analysis. The total number of participants was 14,309 (1328 infants who were culture-positive and 12,981 infants who were culture-negative) from 68 studies that were included in the meta-analysis. The summary estimate of sensitivity was 0.91 (95% confidence interval (CI) 0.85 to 0.95) and of specificity was 0.88 (95% CI 0.83 to 0.92) (low-certainty evidence). We explored heterogeneity by subgroup analyses of type of test, gestational age, type of sepsis onset and prevalence of sepsis. We found insufficient explanations for the heterogeneity (low- to very low-certainty evidence). Sensitivity analyses including studies that analyzed blood samples, using good methodology and those that did not use multiple samples from the same participant revealed similar results (low-certainty evidence).

Authors' conclusions: Molecular assays have the advantage of producing rapid results and have moderate diagnostic accuracy. Molecular assays may prevent overuse of antibiotics in neonates with suspected sepsis. The efficacy and cost-effectiveness of these molecular assays should be evaluated using randomized trials comparing molecular assays as an add-on test versus conventional methods without the add-on test in neonates with suspected sepsis.

PubMed Disclaimer

Conflict of interest statement

TD: none. TD is an author of an included study, but they were not involved with the selection, data extraction or risk of bias assessment of that study.

DV: none. DV is an author of an included study, but they were not involved with the selection, data extraction or risk of bias assessment of that study.

TM: none. TM is an author of an included study, but they were not involved with the selection, data extraction or risk of bias assessment of that study.

JV: none.

ML: none. ML is a DTA editor, but was not involved with the editorial processing of this review.

CC: none.

MP: none. MP is an editor with Cochrane Neonatal, but was not involved with the editorial processing of this review.

Update of

References

References to studies included in this review

Abd El‐Aziz 2020 {published data only}
    1. Abd El-Aziz NK, Gharib AA, Mohamed EA, Hussein AH. Real-time PCR versus MALDI-TOF MS and culture-based techniques for diagnosis of bloodstream and pyogenic infections in humans and animals. Journal of Applied Microbiology 2020;130(5):1630-44. [PMID: ] - PubMed
Abelian 2020 {published data only}
    1. Abelian A, Mund T, Curran MD, Savill SA, Mitra N, Charan C, et al. Towards accurate exclusion of neonatal bacterial meningitis: a feasibility study of a novel 16S rDNA PCR assay. BMC Infectious Diseases 2020;20(1):441. [PMID: ] - PMC - PubMed
Al‐Zahrani 2015 {published data only}
    1. Al-Zahrani AK, Ghonaim MM, Hussein YM, Eed EM, Khalifa AS, Dorgham LS. Evaluation of recent methods versus conventional methods for diagnosis of early-onset neonatal sepsis. Journal of Infection in Developing Countries 2015;9(4):388-93. [DOI: 10.3855/jidc.5950] - DOI - PubMed
Barnes 2018 {published data only}
    1. Barnes GK, Gudina EK, Berhane M, Abdissa A, Tesfaw G, Abebe G, et al. New molecular tools for meningitis diagnostics in Ethiopia – a necessary step towards improving antimicrobial prescription. BMC Infectious Diseases 2018;18(1):684. [PMID: ] - PMC - PubMed
Bhat 2016 {published data only}
    1. Bhat BV, Prasad P, Kumar VB, Harish BN, Krishnakumari K, Rekha A, et al. Syndrome evaluation system (SES) versus blood culture (BACTEC) in the diagnosis and management of neonatal sepsis – a randomized controlled trial. Indian Journal of Pediatrics 2016;83(5):370-9. [PMID: ] - PubMed
Briones 2003 {published data only}
    1. Briones CR, Villanueva-Uy ME, Uy HG. The use of polymerase chain reaction in neonatal candidemia. Pediatric Research 2003;53:396A.
Caunedo‐Jiménez 2023 {published data only}
    1. Caunedo-Jiménez M, Fernández-Colomer B, Fernández-Suárez J, Arias-Llorente RP, Lareu-Vidal S, Mantecón-Fernández L, et al. Clinical utility of the FilmArray(®) Blood Culture Identification (BCID) Panel for the diagnosis of neonatal sepsis. Microorganisms 2023;11(3):732. [DOI: 10.3390/microorganisms11030732] - DOI - PMC - PubMed
Chan 2009 {published data only}
    1. Chan KY, Lam HS, Cheung HM, Chan AK, Li K, Fok TF, et al. Rapid identification and differentiation of Gram-negative and Gram-positive bacterial bloodstream infections by quantitative polymerase chain reaction in preterm infants. Critical Care Medicine 2009;37:2441-7. [PMID: ] - PubMed
Chen 2009 {published data only}
    1. Chen LH, Duan QJ, Cai MT, Wu YD, Shang SQ. Rapid diagnosis of sepsis and bacterial meningitis in children with real-time fluorescent quantitative polymerase chain reaction amplification in the bacterial 16S rRNA gene. Clinical Pediatrics 2009;48(6):641-7. [PMID: ] - PubMed
Chen 2022 {published data only}
    1. Chen L, Zhao Y, Wei J, Huang W, Ma Y, Yang X, et al. Metagenomic next-generation sequencing for the diagnosis of neonatal infectious diseases. Microbiology Spectrum 2022;10(6):e0119522. [DOI: 10.1128/spectrum.01195-22] - DOI - PMC - PubMed
Delcò 2017 {published data only}
    1. Delcò C, Karam OA, Pfister R, Gervaix A, Renzi G, Emonet S, et al. Rapid detection and ruling out of neonatal sepsis by PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS). Early Human Development 2017;108:17-22. [PMID: ] - PubMed
Dierikx 2023 {published data only}
    1. Dierikx T, Budding A, Bos M, Laerhoven H, Schoor S, Niemarkt H, et al. Potential of molecular culture in early onset neonatal sepsis diagnosis: a proof of principle study. Microorganisms 2023;11(4):960. [DOI: 10.3390/microorganisms11040960] - DOI - PMC - PubMed
Draz 2013 {published data only}
    1. Draz NI, Taha SE, Abou Shady NM, Abdel Ghany YS. Comparison of broad range 16S rDNA PCR to conventional blood culture for diagnosis of sepsis in the newborn. Egyptian Journal of Human Medical Genetics 2013;14:403-11. [PMID: ]
Dutta 2009 {published data only}
    1. Dutta S, Narang A, Chakraborty A, Ray P. Diagnosis of neonatal sepsis using universal primer polymerase chain reaction before and after starting antibiotic drug therapy. Archives of Pediatrics & Adolescent Medicine 2009;163(1):6-11. [PMID: ] - PubMed
Eichinger 2019 {published data only}
    1. Eichinger A, Hagen A, Bühn MM, Huebner J. Clinical benefits of introducing real-time multiplex PCR for cerebrospinal fluid as routine diagnostic at a tertiary care pediatric center. Infection 2019;47(1):51-8. - PubMed
El‐Amir 2019 {published data only}
    1. El-Amir MI, Ali El-Feky MA, Abo Elwafa DA, Abd-Elmawgood AE. Rapid diagnosis of neonatal sepsis by PCR for detection of 16S rRNA gene, while blood culture and PCR results were similar in E. coli-predominant EOS cases. Infection and Drug Resistance 2019;12:2703-10. [PMID: ] - PMC - PubMed
El Gawhary 2016 {published data only}
    1. El Gawhary S, El-Anany M, Hassan R, Ali D, El Gameel EQ. The role of 16S rRNA gene sequencing in confirmation of suspected neonatal sepsis. Journal of Tropical Pediatrics 2016;62(1):75-80. [PMID: ] - PMC - PubMed
Enomoto 2009 {published data only}
    1. Enomoto M, Morioka I, Morisawa T, Yokoyama N, Matsuo M. A novel diagnostic tool for detecting neonatal infections using multiplex polymerase chain reaction. Neonatology 2009;96(2):102-8. [PMID: ] - PubMed
Esparcia 2011 {published data only}
    1. Esparcia O, Montemayor M, Ginovart G, Pomar V, Soriano G, Pericas R, et al. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis. Diagnostic Microbiology and Infectious Disease 2011;69(2):153-60. [PMID: ] - PubMed
Fujimori 2010 {published data only}
    1. Fujimori M, Hisata K, Nagata S, Matsunaga N, Komatsu M, Shoji H, et al. Efficacy of bacterial ribosomal RNA-targeted reverse transcription-quantitative PCR for detecting neonatal sepsis: a case control study. BMC Pediatrics 2010;10:53. [PMID: ] - PMC - PubMed
Gaikwad 2020 {published data only}
    1. Gaikwad K, Mujawar N. Neonatal bacterial sepsis: blood culture versus 16S rRNA detection. Perinatology 2020;20(4):127-32.
Garcia‐Elorriaga 2012 {published data only}
    1. Garcia-Elorriaga G, Cortes-Torres N, Ballesteros-Del-Olmo JC, Del Rey-Pineda G, Gonzaez-Bonilla C. The usefulness of the buffy coat smear and panbacterial polymerase chain reaction in early diagnosis of neonatal sepsis. Revista de Investigacion Clinica 2012;64(3):275-83. [PMID: ] - PubMed
García‐Gudiño 2018 {published data only}
    1. García-Gudiño I, Yllescas-Medrano E, Maida-Claros R, Soriano-Becerril D, Díaz NF, García-López G, et al. Microbiological comparison of blood culture and amplification of 16S rDNA methods in combination with DGGE for detection of neonatal sepsis in blood samples. European Journal of Pediatrics 2018;177(1):85-93. [PMID: ] - PubMed
Ge 2021 {published data only}
    1. Ge M, Gan M, Yan K, Xiao F, Yang L, Wu B, et al. Combining metagenomic sequencing with whole exome sequencing to optimize clinical strategies in neonates with a suspected central nervous system infection. Frontiers in Cellular and Infection Microbiology 2021;11:492. [PMID: ] - PMC - PubMed
Hayder 2023 {published data only}
    1. Hayder Hamad M, Eidan Hadi M, Ajam IK. Comparison between polymerase chain reaction and blood culture for diagnosis of neonatal sepsis. Archives of Razi Institute 2023;78(1):221-6. [DOI: 10.22092/ari.2022.358608.2259] - DOI - PMC - PubMed
Ibarra 2015 {published data only}
    1. Ibarra JO, Valdez PT, Mendez EV, Rojas AL, Flores GL, Bocanegra AC, et al. Evaluation of the Light-Cycler® SeptiFast Test in newborns with suspicion of nosocomial sepsis. Iran Journal of Pediatrics 2015;25(1):e253. [PMID: ] - PMC - PubMed
İstanbullu 2019 {published data only}
    1. İstanbullu K, Köksal N, Çetinkaya M, Özkan H, Yakut T, Karkucak M, et al. The potential utility of real-time PCR of the 16S-rRNA gene in the diagnosis of neonatal sepsis. Turkish Journal of Pediatrics 2019;61:493-9. - PubMed
Jordan 2000 {published data only}
    1. Jordan JA, Durso MB. Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. Journal of Clinical Microbiology 2000;38(7):2574-8. [PMID: ] - PMC - PubMed
Jordan 2005a {published data only}
    1. Jordan JA, Durso MB. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. Journal of Molecular Diagnostics 2005;7(5):575-81. [PMID: ] - PMC - PubMed
Jordan 2006 {published data only}
    1. Jordan JA, Durso MB, Butchko AR, Jones JG, Brozanski BS. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing. Journal of Molecular Diagnostics 2006;8(3):357-63. [PMID: ] - PMC - PubMed
Kasper 2013 {published data only}
    1. Kasper DC, Altiok I, Mechtler TP, Bohm J, Straub J, Langgartner M, et al. Molecular detection of late-onset neonatal sepsis in premature infants using small blood volumes: proof-of-concept. Neonatology 2013;103(4):268-73. [PMID: ] - PubMed
Laforgia 1997 {published data only}
    1. Laforgia N, Coppola B, Carbone R, Grassi A, Mautone A, Lolascon A. Rapid detection of neonatal sepsis using polymerase chain reaction. Acta Paediatrica 1997;86(10):1097-9. [PMID: ] - PubMed
Leber 2016 {published data only}
    1. Leber AL, Everhart K, Balada-Llasat J, Cullison J, Daly J, Holt S, et al. Multicenter evaluation of BioFire FilmArray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. Journal of Clinical Microbiology 2016;54(9):2251-61. [PMID: ] - PMC - PubMed
Li 2019 {published data only}
    1. Li HT, Lin BC, Huang ZF, Yang CZ, Huang WM. Clinical value of droplet digital PCR in rapid diagnosis of invasive fungal infection in neonates. Zhongguo Dang Dai Er Ke za Zhi [Chinese Journal of Contemporary Pediatrics] 2019;21(1):45-51. [PMID: ] - PMC - PubMed
Lima 2007 {published data only}
    1. Lima V, Alpuche A, Noyola D, Soria R, Nieto K. Polymerase chain reaction technique in the diagnosis of neonatal sepsis: future gold standard? Pediatric Academic Societies Annual Meeting; 2007 May 5-8; Toronto (ON).
Liu 2014 {published data only}
    1. Liu CL, Ai HW, Wang WP, Chen L, Hu HB, Ye T, et al. Comparison of 16S rRNA gene PCR and blood culture for diagnosis of neonatal sepsis. Archives of Pediatrics 2014;21(2):162-9. [PMID: ] - PubMed
Makhoul 2005 {published data only}
    1. Makhoul I, Smolkin RT, Sujov P, Kassis I, Tamir A, Shalginov R, et al. PCR-based diagnosis of neonatal staphylococcal bacteremias. Journal of Clinical Microbiology 2005;43(9):4823-5. [PMID: ] - PMC - PubMed
Makhoul 2006 {published data only}
    1. Makhoul IR, Yacoub A, Smolkin T, Sujov P, Kassis I, Sprecher H. Values of C-reactive protein, procalcitonin, and Staphylococcus-specific PCR in neonatal late-onset sepsis. Acta Paediatrica 2006;95(10):1218-23. [PMID: ] - PubMed
Mancilla‐Ramirez 2017 {published data only}
    1. Mancilla-Ramirez J. Pyrosequencing as a rapid diagnosis approach in neonatal sepsis. Journal of Perinatal Medicine 2017;45:167.
Massa‐Buck 2024 {published data only}
    1. Massa-Buck B, Mendoza SM, Keiser J, Mohamed MA. Use of rapid molecular polymerase chain reaction in early detection of bacteremia in neonates prior to blood culture positivity: a pilot study. American Journal of Perinatology 2024;41(5):569-74. [PMID: ] - PubMed
Mazzucchelli 2020 {published data only}
    1. Mazzucchelli I, Garofoli F, Angelini M, Tinelli C, Tzialla C, Decembrino L. Rapid detection of bacteria in bloodstream infections using a molecular method: a pilot study with a neonatal diagnostic kit. Molecular Biology Reports 2020;47:363-8. [PMID: ] - PubMed
Meehan 2015 {published data only}
    1. Meehan M, Cafferkey M, Corcoran S, Foran A, Hapnes N, LeBlanc D, et al. Real-time polymerase chain reaction and culture in the diagnosis of invasive group B streptococcal disease in infants: a retrospective study. European Journal of Clinical Microbiology & Infectious Diseases 2015;34(12):2413-20. [DOI: 10.1007/s10096-015-2496-5] - DOI - PubMed
Midan 2017 {published data only}
    1. Midan DA, Moustafa WM, El Fotoh A, El Shalakany AH. The potential role of incorporating real-time PCR and DNA sequencing for amplification and detection of 16S rRNA gene signatures in neonatal sepsis. Journal of Maternal-Fetal & Neonatal Medicine 2017;30(12):1476-83. - PubMed
Oeser 2020 {published data only}
    1. Oeser C, Pond M, Butcher P, Bedford Russell A, Henneke P, Laing K, et al. PCR for the detection of pathogens in neonatal early onset sepsis. PLOS One 2020;15(1):e0226817. [PMID: ] - PMC - PubMed
Ohlin 2008 {published data only}
    1. Ohlin A, Backman A, Bjorkqvist M, Molling P, Jurstrand M, Schollin J. Real-time PCR of the 16S-rRNA gene in the diagnosis of neonatal bacteraemia. Acta Paediatrica 2008;97(10):1376-80. [PMID: ] - PubMed
Ohlin 2012 {published data only}
    1. Ohlin A, Backman A, Ewald U, Schollin J, Bjorkqvist M. Diagnosis of neonatal sepsis by broad-range 16S real-time polymerase chain reaction. Neonatology 2012;10(4):241-6. [PMID: ] - PubMed
Paolucci 2009 {published data only}
    1. Paolucci M, Capretti MG, Dal Monte P, Corvaglia L, Landini MP, Varani S, et al. Laboratory diagnosis of late-onset sepsis in newborns by multiplex real-time PCR. Journal of Medical Microbiology 2009;58(Pt 4):533-4. [PMID: ] - PubMed
Punia 2017 {published data only}
    1. Punia H, Gathwala G, Dhaulakhandi DB, Aamir M. Diagnosis of neonatal sepsis using 16S rRNA polymerase chain reaction. Tropical Doctor 2017;47(4):336-9. [PMID: ] - PubMed
Raju 2020 {published data only}
    1. Raju V, Pournami F, Nandakumar A, Prabhakar J, Nair PM, Jain N. Improving microbe detection and optimizing antibiotic use in neonatal sepsis with multiplex polymerase chain reaction: a comparative cohort study. Infectious Diseases in Clinical Practice (Baltimore, Md.) 2020;28(3):142-6.
Reier‐Nilsen 2009 {published data only}
    1. Reier-Nilsen T, Farstad T, Nakstad B, Lauvrak V, Steinbakk M. Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study. BMC Pediatrics 2009;9:5. [PMID: ] - PMC - PubMed
Rohit 2016 {published data only}
    1. Rohit A, Maiti B, Shenoy S, Karunasagar I. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis. Indian Journal of Medical Research 2016;143(1):72-8. [PMID: ] - PMC - PubMed
Shaat 2013 {published data only}
    1. Shaat SS, El Shazly SA, Badr Eldin MM, Barakat SS, Hashish MH. Role of polymerase chain reaction as an early diagnostic tool for neonatal bacterial sepsis. Journal of Egypt Public Health Association 2013;88(3):160-4. [PMID: ] - PubMed
Shang 2005 {published data only}
    1. Shang S, Chen G, Wu Y, Du L, Zhao Z. Rapid diagnosis of bacterial sepsis with PCR amplification and microarray hybridization in 16S rRNA gene. Pediatric Research 2005;58(1):143-8. [PMID: ] - PubMed
Silva‐Junior 2016 {published data only}
    1. Silva-Junior WP, Martins AS, Xavier PC, Appel KL, Oliveira Junior SA, Palhares DB. Etiological profile of early neonatal bacterial sepsis by multiplex qPCR. Journal of Infection in Developing Countries 2016;10(12):1318-24. [PMID: ] - PubMed
Sonika 2018 {published data only}
    1. Sonika P, Gathwala G, Dhaulakhandi DB, Goel N, Lather S. Evaluation of 18S rRNA PCR in the diagnosis of neonatal fungal sepsis. Journal of Pediatric Infectious Diseases 2018;13(1):37-41.
Straňák 2020 {published data only}
    1. Straňák Z, Berka I, Korček P, Urbánek J, Lázničková T, Staněk L. Bacterial DNA detection in very preterm infants assessed for risk of early onset sepsis. Journal of Perinatal Medicine 2020;50(3):356-62. [PMID: ] - PubMed
Stranieri 2018 {published data only}
    1. Stranieri I, Kanunfre KA, Rodrigues JC, Yamamoto L, Nadaf MI, Palmeira P, et al. Assessment and comparison of bacterial load levels determined by quantitative amplifications in blood culture-positive and negative neonatal sepsis. Revista do Instituto de Medicina Tropical de Sao Paulo 2018;60:e61. [PMID: ] - PMC - PubMed
Straub 2017 {published data only}
    1. Straub J, Paula H, Mayr M, Kasper D, Assadian O, Berger A, et al. Diagnostic accuracy of the ROCHE Septifast PCR system for the rapid detection of blood pathogens in neonatal sepsis – a prospective clinical trial. PLOS One 2017;12(11):e0187688. [PMID: ] - PMC - PubMed
Taira 2014 {published data only}
    1. Taira CL, Okay TS, Delgado AF, Ceccon ME, Almeida MT, Del Negro GM. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients. BMC Infectious Diseases 2014;14:406. [PMID: ] - PMC - PubMed
Tirodker 2003 {published data only}
    1. Tirodker UH, Nataro JP, Smith S, LasCasas L, Fairchild KD. Detection of fungemia by polymerase chain reaction in critically ill neonates and children. Journal of Perinatology 2003;23(2):117-22. [PMID: ] - PubMed
Tong 2004 {published data only}
    1. Tong MQ, Shang SQ, Wu YD, Zhao ZY. Rapid diagnosis of neonatal sepsis by 16SrRNA genes PCR amplification and genechip hybridization. Zhonghua Er Ke za Zhi. Chinese Journal of Pediatrics 2004;42(9):663-7. [PMID: ] - PubMed
Torres‐Martos 2013 {published data only}
    1. Torres-Martos E, Perez-Ruiz M, Pedrosa-Corral I, Pena-Caballero M, Jimenez-Valera MM, Perez-Ramirez MD, et al. Evaluation of the LightCycler® SeptiFast test in newborns and infants with clinical suspicion of sepsis. Enfermedades Infecciosas Microbiologia Clinica 2013;31(6):375-9. [PMID: ] - PubMed
Tröger 2016 {published data only}
    1. Tröger B, Härtel C, Buer J, Dördelmann M, Felderhoff-Müser U, Höhn T, et al. Clinical relevance of pathogens detected by multiplex PCR in blood of very-low-birth weight infants with suspected sepsis - multicentre study of the German neonatal network. PLOS One 2016;11(7):e0159821. [PMID: ] - PMC - PubMed
Trovato 2012 {published data only}
    1. Trovato L, Betta P, Romeo MG, Oliveri S. Detection of fungal DNA in lysis-centrifugation blood culture for the diagnosis of invasive candidiasis in neonatal patients. Clinical Microbiology and Infection 2012;18(3):E63-5. [PMID: ] - PubMed
van den Brand 2014 {published data only}
    1. Van den Brand M, Peters RP, Catsburg A, Rubenjan A, Broeke FJ, den Dungen FA, et al. Development of a multiplex real-time PCR assay for the rapid diagnosis of neonatal late onset sepsis. Journal of Microbiological Methods 2014;106:8-15. [PMID: ] - PubMed
van den Brand 2018 {published data only}
    1. den Brand M, den Dungen FA, Bos MP, Weissenbruch MM, Furth AM, Lange A, et al. Evaluation of a real-time PCR assay for detection and quantification of bacterial DNA directly in blood of preterm neonates with suspected late-onset sepsis. Critical Care (London, England) 2018;22(1):105. [PMID: ] - PMC - PubMed
van der Hoeven 2023 {published data only}
    1. Hoeven A, Beek MT, Bekker V, Meijers E, Ivens MJ, Wessels E, et al. Improved diagnostics in bacterial neonatal meningitis using a next-generation sequencing platform. Infectious Diseases and Therapy 2023;12(7):1921-33. [DOI: 10.1007/s40121-023-00844-8] - DOI - PMC - PubMed
Villanueva‐Uy 2003 {published data only}
    1. Villanueva-Uy ME, Briones CR, Uy HG. Application of polymerase chain reaction in late-onset neonatal sepsis. Pediatric Research 2003;53:313A.
Wen 2019 {published data only}
    1. Wen N, Shi J, Wu J, Yang S. The application of PCT and CRP combined with 16s rRNA in the early diagnosis of neonatal septicemia. International Journal of Clinical and Experimental Medicine 2019;12(11):12861-7.
Wu 2007 {published data only}
    1. Wu YD, Shang SQ, Li JP, Yang ZQ, Zheng ZB, Du LZ, et al. A broad-range 16S rRNA gene real-time PCR assay for the diagnosis of neonatal septicemia. Zhonghua Er Ke za Zhi. Chinese Journal of Pediatrics 2007;45(6):446-9. [PMID: ] - PubMed
Wu 2008 {published data only}
    1. Wu YD, Chen LH, Wu XJ, Shang SQ, Lou JT, Du LZ, et al. Gram stain-specific-probe-based real-time PCR for diagnosis and discrimination of bacterial neonatal sepsis. Journal of Clinical Microbiology 2008;46(8):2613-9. [PMID: ] - PMC - PubMed
Yadav 2005 {published data only}
    1. Yadav AK, Wilson CG, Prasad PL, Menon PK. Polymerase chain reaction in rapid diagnosis of neonatal sepsis. Indian Pediatrics 2005;42(7):681-5. [PMID: ] - PubMed
Zhang 2019 {published data only}
    1. Zhang Y. Early diagnosis and clinical characteristics of neonatal purulent meningitis. Acta Medica Mediterranea 2019;35:615-9.
Zhang 2022 {published data only}
    1. Zhang R, Zhuang Y, Xiao ZH, Li CY, Zhang F, Huang WQ, et al. Diagnosis and surveillance of neonatal infections by metagenomic next-generation sequencing. Frontiers in Microbiology 2022;13:855988. [PMID: ] - PMC - PubMed

References to studies excluded from this review

Akkaya 2017 {published data only}
    1. Akkaya O, Guvenc HI, Yuksekkaya S, Opus A, Guzelant A, Kaya M, et al. Real-time PCR detection of the most common bacteria and viruses causing meningitis. Clinical Laboratory 2017;63(4):827-32. [PMID: ] - PubMed
Ala‐Houhala 2018 {published data only}
    1. Ala-Houhala M, Koukila-Kähkölä P, Antikainen J, Valve J, Kirveskari J, Anttila VJ. Clinical use of fungal PCR from deep tissue samples in the diagnosis of invasive fungal diseases: a retrospective observational study. Clinical Microbiology and Infection 2018;24(3):301-5. [PMID: ] - PubMed
Albuquerque 2019 {published data only}
    1. Albuquerque RC, Moreno AC, Dos Santos SR, Ragazzi SL, Martinez MB. Multiplex-PCR for diagnosis of bacterial meningitis. Brazilian Journal of Microbiology 2019;50(2):435-43. [PMID: ] - PMC - PubMed
Al‐Emran 2016a {published data only}
    1. Al-Emran HM, Krumkamp R, Dekker DM, Eibach D, Aaby P, Adu-Sarkodie Y, et al. Validation and identification of invasive salmonella serotypes in sub-Saharan Africa by multiplex polymerase chain reaction. Clinical Infectious Diseases 2016;62:S80-2. [PMID: ] - PubMed
Al‐Emran 2016b {published data only}
    1. Al-Emran HM, Hahn A, Baum J, Cruz Espinoza LM, Deerin J, Im J, et al. Diagnosing salmonella enterica serovar typhi infections by polymerase chain reaction using EDTA blood samples of febrile patients from Burkina Faso. Clinical Infectious Diseases 2016;62:S37-41. [PMID: ] - PubMed
Anand 2016 {published data only}
    1. Anand V, Holmen J, Neely M, Pannaraj PS, Dien Bard J. The brief case: neonatal meningitis caused by listeria monocytogenes diagnosed by multiplex molecular panel. Journal of Clinical Microbiology 2016;54(12):2846-9. [PMID: ] - PMC - PubMed
Breeding 2016 {published data only}
    1. Breeding KM, Ragipani B, Lee Kun-Uk D, Malik M, Randis TM, Ratner AJ. Real-time PCR-based serotyping of streptococcus agalactiae. Scientific Reports 2016;6:38523. [DOI: 10.1038/srep38523] - DOI - PMC - PubMed
Chiba 2009 {published data only}
    1. Chiba N, Murayama SY, Morozumi M, Nakayama E, Okada T, Iwata S, et al. Rapid detection of eight causative pathogens for the diagnosis of bacterial meningitis by real-time PCR. Journal of Infection and Chemotherapy 2009;15(2):92-8. [PMID: ] - PubMed
Chou 2016 {published data only}
    1. Chou RC, Zheng X. A comparison of molecular assays for Mycoplasma pneumoniae in pediatric patients. Diagnostic Microbiology and Infectious Disease 2016;85(1):6-8. [PMID: ] - PubMed
Culbreath 2019 {published data only}
    1. Culbreath K, Melanson S, Gale J, Baker J, Li F, Saebo O, et al. Validation and retrospective clinical evaluation of a quantitative 16S rRNA gene metagenomic sequencing assay for bacterial pathogen detection in body fluids. Journal of Molecular Diagnostics 2019;21(5):913-23. [PMID: ] - PubMed
Dantuluri 2020 {published data only}
    1. Dantuluri KL, Konvinse KC, Crook J, Thomsen IP, Banerjee R. Human herpesvirus 6 detection during the evaluation of sepsis in infants using the FilmArray Meningitis/Encephalitis Panel. Journal of Pediatrics 2020;223:204-6. [PMID: ] - PubMed
Das 2015 {published data only}
    1. Das BK, Suri S, Nath G, Prasad R. Urine nested polymerase chain reaction in neonatal septicemia. Journal of Tropical Pediatrics 2015;61(4):295-300. [PMID: ] - PubMed
Davis 2015 {published data only}
    1. Davis J, Christie S, Fairley D, Coyle P, Tubman R, Shields MD. Performance of a novel molecular method in the diagnosis of late-onset sepsis in very low birth weight infants. PLOS One 2015;10(8):e0136472. [DOI: 10.1371/journal.pone.0136472] - DOI - PMC - PubMed
Decuypere 2016 {published data only}
    1. Decuypere S, Meehan CJ, Van Puyvelde S, De Block T, Maltha J, Palpouguini L, et al. Diagnosis of bacterial bloodstream infections: a 16S metagenomics approach. PLOS Neglected Tropical Diseases 2016;10(2):e0004470. [PMID: ] - PMC - PubMed
de Zoysa 2012 {published data only}
    1. Zoysa A, Edwards K, Gharbia S, Underwood A, Charlett A, Efstratiou A. Non-culture detection of Streptococcus agalactiae (Lancefield group B Streptococcus) in clinical samples by real-time PCR. Journal of Medical Microbiology 2012;61(Pt 8):1086-90. [PMID: ] - PubMed
Du Plessis 2021 {published data only}
    1. Du Plessis M, Gouveia L, Freitas C, Abera NA, Lula BS, Raboba JL, et al. The role of molecular testing in pediatric meningitis surveillance in southern and East African countries, 2008–2017. Journal of Infectious Diseases 2021;224:S194-S203. [PMID: ] - PMC - PubMed
Erdem 2021 {published data only}
    1. Erdem G, Kaptsan I, Sharma H, Kumar A, Aylward SC, Kapoor A, et al. Cerebrospinal fluid analysis for viruses by metagenomic next-generation sequencing in pediatric encephalitis: not yet ready for prime time? Journal of Child Neurology 2021;36(5):350-6. [PMID: ] - PubMed
Fatima 2017 {published data only}
    1. Fatima A, Bashir G, Wani T, Jan A, Kohli A, Khan MS. Molecular identification of Candida species isolated from cases of neonatal candidemia using polymerase chain reaction-restriction fragment length polymorphism in a tertiary care hospital. Indian Journal of Pathology & Microbiology 2017;60(1):61-5. [PMID: ] - PubMed
Fernandes 2020 {published data only}
    1. Fernandes JF, Laubscher F, Held J, Eckerle I, Docquier M, Grobusch MP, et al. Unbiased metagenomic next-generation sequencing of blood from hospitalized febrile children in Gabon. Emerging Microbes & Infections 2020;9(1):1242-4. [PMID: ] - PMC - PubMed
Firoozeh 2019 {published data only}
    1. Firoozeh F, Shiralinezhad A, Momen-Heravi M, Aghadavod E, Zibaei M. Rapid detection of pathogenic bacteria in whole blood samples using 23S rRNA PCR assays. Open Microbiology Journal 2019;13(1):101-5. [DOI: 10.2174/1874285801913010101] - DOI
Freedman 2022 {published data only}
    1. Freedman A, Mangold K, Price E, Ernst L. Pathogen-specific nucleic acid targets in umbilical cord tissue: correlations with neonatal blood culture and placental histology. Pediatric and Developmental Pathology 2022;25(2):223-4. [DOI: 10.1177/10935266221086454] - DOI
Gies  2016 {published data only}
    1. Gies F, Tschiedel E, Felderhoff-Müser U, Rath PM, Steinmann J, Dohna-Schwake C. Prospective evaluation of SeptiFast Multiplex PCR in children with systemic inflammatory response syndrome under antibiotic treatment. BMC Infectious Diseases 2016;16:378. [PMID: ] - PMC - PubMed
Golden 2004 {published data only}
    1. Golden SM, Stamilio DM, Faux BM, Dela Cruz WP, Shoemaker CT, Blackmon CL, et al. Evaluation of a real-time fluorescent PCR assay for rapid detection of Group B Streptococci in neonatal blood. Diagnostic Microbiology and Infectious Disease 2004;50(1):7-13. [PMID: ] - PubMed
Guiducci 2019 {published data only}
    1. Guiducci S, Moriondo M, Nieddu F, Ricci S, De Vitis E, Casini A, et al. Culture and real-time polymerase chain reaction sensitivity in the diagnosis of invasive meningococcal disease: does culture miss less severe cases? PLOS One 2019;14(3):e0212922. [PMID: ] - PMC - PubMed
Haddad‐Boubaker 2018 {published data only}
    1. Haddad-Boubaker S, Lakhal M, Fathallah C, Bouafsoun A, Kharrat M, Khemiri M, et al. Molecular diagnosis of bacterial meningitis by multiplex real time PCR in Tunisian children. Journal of Infection in Developing Countries 2018;12(4):235-43. [DOI: 10.3855/jidc.9650] - DOI - PubMed
Hasan 2020 {published data only}
    1. Hasan MR, Sundararaju S, Tang P, Tsui KM, Lopez AP, Janahi M, et al. A metagenomics-based diagnostic approach for central nervous system infections in hospital acute care setting. Scientific Reports 2020;10(1):11194. - PMC - PubMed
Hassan 2018 {published data only}
    1. Hassan JS, Salman AE, Obeid AS, Rhman TR. Isolation and identification of Serratia marcescens from suspected late neonatal sepsis in intensive care unit. International Journal of Pharmaceutical Quality Assurance 2018;9(1):286-90.
Hemmati 2021 {published data only}
    1. Hemmati N, Nikkhahi F, Javadi A, Eskandarion S, Marashi SM. Use of a new multiplex quantitative polymerase chain reaction based assay for simultaneous detection of Neisseria meningitidis, Escherichia coli k, 1 Streptococcus agalactiae, and Streptococcus pneumoniae. Iranian Journal of Microbiology 2021;13(4):464-9. [DOI: 10.18502/ijm.v13i4.6970] - DOI - PMC - PubMed
Hibberd 2016 {published data only}
    1. Hibberd PL, Qazi SA. Population-based novel molecular diagnostics to move the neonatal sepsis agenda forward. Pediatric Infectious Disease Journal 2016;35(5 Suppl 1):S1-2. [DOI: 10.1097/INF.0000000000001097] - DOI - PubMed
Howard 2021 {published data only}
    1. Howard AK, Claeys K, Biggs JM, Parbuoni KA, Johnson K, Luneburg P, et al. Performance of Verigene rapid diagnostic testing for detection of inpatient pediatric bacteremia. Journal of Pediatric Pharmacology and Therapeutics 2021;26(5):472-7. [DOI: 10.5863/1551-6776-26.5.472] - DOI - PMC - PubMed
Huber 2021 {published data only}
    1. Huber S, Weinberger J, Pilecky M, Lorenz I, Schildberger A, Weber V, et al. A high leukocyte count and administration of hydrocortisone hamper PCR-based diagnostics for bloodstream infections. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(7):1441-9. - PubMed
Jabbar Salman 2018 {published data only}
    1. Jabbar Salman H, Hesnaa Saeed M, Nada Mohammed T, Abbas AA. Isolation and identification of bacterial species in neonatal sepsis using polymerase chain reaction-based 16S rRNA sequencing. Journal of Pharmaceutical Sciences and Research 2018;10(6):1508-10.
Jones 2010 {published data only}
    1. Jones V, Wilks M, Johnson G, Warwick S, Hennessey E, Kempley S, et al. The use of molecular techniques for bacterial detection in the analysis of gastric aspirates collected from infants on the first day of life. Early Human Development 2010;86(3):167-70. [PMID: ] - PubMed
Jordan 2005b {published data only}
    1. Jordan JA, Butchko AR, Durso MB. Use of pyrosequencing of 16S rRNA fragments to differentiate between bacteria responsible for neonatal sepsis. Journal of Molecular Diagnostics 2005;7(1):105-10. [PMID: ] - PMC - PubMed
Jordan 2009 {published data only}
    1. Jordan JA, Jones-Laughner J, Durso MB. Utility of pyrosequencing in identifying bacteria directly from positive blood culture bottles. Journal of Clinical Microbiology 2009;47(2):368-72. [PMID: ] - PMC - PubMed
Keij 2020 {published data only}
    1. Keij FM, Kornelisse RF, Tramper-Stranders GA, Allegaert K. Improved pathogen detection in neonatal sepsis to boost antibiotic stewardship. Future Microbiology 2020;15:461-4. - PubMed
Kelkar 2019 {published data only}
    1. Kelkar A, Christopher A, Doshi P, Nimbargi R, Mani NS. Standardisation of protocols for the diagnosis of neonatal sepsis by molecular methods. Research and Practice in Thrombosis and Haemostasis 2019;3:477-8.
Kim 2021 {published data only}
    1. Kim KM, Park JY, Park KU, Sohn YJ, Choi YY, Han MS, et al. Diagnostic evaluation of the BioFire meningitis/encephalitis panel: a pilot study including febrile infants younger than 90 days. Pediatric Infection and Vaccine 2021;28(2):92-100. [DOI: 10.14776/piv.2021.28.e9] - DOI
Koh 2018 {published data only}
    1. Koh LL, O'Rourke S, Brennan M, Clooney L, Cafferkey M, McCallion N, et al. Impact of a rapid molecular test for positive blood cultures from neonatal intensive care patients on clinical management: a retrospective audit. Irish Journal of Medical Science 2018;187(2):423-7. - PubMed
Kumar 2021 {published data only}
    1. Kumar R, Kumar P, Singh MK, Singh V, Singh SP, Goyal A. Molecular characterisation and profile of extended spectrum beta lactamase producing enterobacteriaceae isolates causing neonatal sepsis at a tertiary care center. Journal of Nepal Paediatric Society 2021;41(2):197-204.
Lafolie 2018 {published data only}
    1. Lafolie J, Labbé A, L'Honneur AS, Madhi F, Pereira B, Decobert M, et al. Assessment of blood enterovirus PCR testing in paediatric populations with fever without source, sepsis-like disease, or suspected meningitis: a prospective, multicentre, observational cohort study. Lancet Infectious Diseases 2018;18(12):1385-96. - PMC - PubMed
Lin 2022 {published data only}
    1. Lin GY, Lin CY, Chi H, Huang DT, Huang CY, Chiu NC. The experience of using FilmArray Meningitis/Encephalitis Panel for the diagnosis of meningitis and encephalitis in pediatric patients. Journal of Microbiology, Immunology and Infection 2022;55(6P2):1180-7. [DOI: 10.1016/j.jmii.2022.07.013] - DOI - PubMed
Liu 2020 {published data only}
    1. Liu T, Shi H, Liu F, Jiang Y. Application of metagenomic next-generation sequencing in detection of the pathogens in neonatal infectious diseases. Chinese Journal of Laboratory Medicine 2020;43(6):609-13.
Lucignano 2011 {published data only}
    1. Lucignano B, Ranno S, Liesenfeld O, Pizzorno B, Putignani L, Bernaschi P, et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. Journal of Clinical Microbiology 2011;49(6):2252-8. [PMID: ] - PMC - PubMed
Lyons 2018 {published data only}
    1. Lyons TW, Cruz AT, Freedman SB, Nigrovic LE. Accuracy of herpes simplex virus polymerase chain reaction testing of the blood for central nervous system herpes simplex virus infections in infants. Journal of Pediatrics 2018;200:274-276.e1. - PubMed
Mahajan 2016 {published data only}
    1. Mahajan P, Kuppermann N, Mejias A, Suarez N, Chaussabel D, Casper TC, et al. Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger. JAMA 2016;316(8):846-57. [DOI: 10.1001/jama.2016.9207] - DOI - PMC - PubMed
Makhoul 2007 {published data only}
    1. Makhoul IR, Sprecher H, Smolkin T, Sawaid R, Ben-David S, Sujov P, et al. Approach to term neonates born after maternal intrapartum fever and unknown maternal group B Streptococcus status: value of serum C-reactive protein and 16S rRNA gene PCR amplification. Pediatric Infectious Disease Journal 2007;26(11):1064-6. [PMID: ] - PubMed
May 2020 {published data only}
    1. May ML, Tozer S, Day R, Doyle R, Bernard A, Schlapbach LJ, et al. Polymerase chain reaction for human parechovirus on blood samples improves detection of clinical infections in infants. Molecular Biology Reports 2020;47(1):715-20. - PubMed
Messacar 2016 {published data only}
    1. Messacar K, Breazeale G, Robinson CC, Dominguez SR. Potential clinical impact of the film array meningitis encephalitis panel in children with suspected central nervous system infections. Diagnostic Microbiology and Infectious Disease 2016;86(1):118-20. - PMC - PubMed
Morrissey 2017 {published data only}
    1. Morrissey SM, Nielsen M, Ryan L, Al Dhanhani H, Meehan M, McDermott S, et al. Group B streptococcal PCR testing in comparison to culture for diagnosis of late onset bacteraemia and meningitis in infants aged 7–90 days: a multi-centre diagnostic accuracy study. European Journal of Clinical Microbiology & Infectious Diseases 2017;36(7):1317-24. - PubMed
Nambei 2016 {published data only}
    1. Nambei WS, Gamba EP, Gbangbangai E, Ouambita RM, Dalengat-Vogbia Z, Nana R, et al. Detection of the serogoups and serotypes causing bacterial meningitidis in Bangui, 2012. Medecine et Sante Tropicales 2016;26(3):302-7. - PubMed
Nassrallah 2021 {published data only}
    1. Nassrallah B, Bamberger E, Cohen S, Srugo I, Golan-Shany O, Shlonsky Y, et al. The yield of CSF molecular testing in febrile neonates. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(7):1553-7. - PubMed
NCT03884894a {published data only}
    1. NCT03884894. Neonatal sepsis diagnosis: PCR commercial technique and blood culture. https://clinicaltrials.gov/study/NCT03884894 (first received 20 March 2019).
NCT03884894b {published data only}
    1. NCT03884894. Neonatal sepsis diagnosis: PCR commercial technique and blood culture. https://clinicaltrials.gov/study/NCT03884894 (first received 20 March 2019).
Nga Nguyen 2022 {published data only}
    1. Nga Nguyen TQ, Nguyen TV, Tran MD, Skinner A, Narchi H. Cerebrospinal fluid polymerase chain reaction in the diagnosis of neonatal bacterial meningitis: a single-center experience from Vietnam. Indian Pediatrics 2022;59(12):943-5. - PubMed
Obiero 2022 {published data only}
    1. Obiero CW, Gumbi W, Mwakio S, Mwangudzah H, Seale AC, Taniuchi M, et al. Detection of pathogens associated with early-onset neonatal sepsis in cord blood at birth using quantitative PCR. Wellcome Open Research 2022;7:3. [DOI: 10.12688/wellcomeopenres.17386.3] - DOI - PMC - PubMed
Okeke 2021 {published data only}
    1. Okeke IN, Ihekweazu C. The importance of molecular diagnostics for infectious diseases in low-resource settings. Nature Reviews. Microbiology 2021;19(9):547-8. - PMC - PubMed
Paioni 2020 {published data only}
    1. Paioni P, Barbey F, Relly C, Meyer Sauteur P, Berger C. Impact of rapid enterovirus polymerase chain reaction testing on management of febrile young infants < 90 days of age with aseptic meningitis. BMC Pediatrics 2020;20(1):166. - PMC - PubMed
Pandey 2021 {published data only}
    1. Pandey M, Xess I, Singh G, Kumar R, Mahapatra M, Jyotsna VP, et al. Conventional PCR as a reliable method for diagnosing invasive mucormycosis in resource-limited settings. Journal of Medical Microbiology 2021;70(5):-. [DOI: 10.1099/jmm.0.001370] - DOI - PubMed
Park 2019 {published data only}
    1. Park SE, Song D, Shin K, Nam SO, Ko A, Kong J, et al. Prospective research of human parechovirus and cytokines in cerebrospinal fluid of young children less than one year with sepsis-like illness: comparison with enterovirus. Journal of Clinical Virology 2019;119:11-6. - PubMed
Pintos 2021 {published data only}
    1. Pintos C, Mintegi S, Benito J, Aranzamendi M, Bonilla L, Gomez B. Blood enterovirus polymerase chain reaction testing in young febrile infants. Archives of Disease in Childhood 2021;106(12):1179-83. - PubMed
Ramos 2017 {published data only}
    1. Ramos JT, Villar S, Bouza E, Bergon-Sendin E, Perez Rivilla A, Collados CT, et al. Performance of a quantitative PCR-based assay and beta-d-glucan detection for diagnosis of invasive candidiasis in very-low-birth-weight preterm neonatal patients (CANDINEO study). Journal of Clinical Microbiology 2017;55(9):2752-64. - PMC - PubMed
Ray 2016 {published data only}
    1. Ray ST, Drew RJ, Hardiman F, Pizer B, Riordan A. Rapid identification of microorganisms by FilmArray blood culture identification panel improves clinical management in children. Pediatric Infectious Disease Journal 2016;35(5):e134-8. - PubMed
Razlansari 2016 {published data only}
    1. Razlansari AA, Jamalidoust M, Ziyaeyan M, Shahian M, Moeini M, Asaei S, et al. Diagnosis of non-polio enteroviral infections in septic neonates by polymerase chain reaction assays. International Journal of Pharmaceutical Sciences and Research 2016;7(12):4956-62.
Saha 2019 {published data only}
    1. Saha S, Ramesh A, Kalantar K, Malaker R, Hasanuzzaman M, Khan LM, et al. Unbiased metagenomic sequencing for pediatric meningitis in Bangladesh reveals neuroinvasive chikungunya virus outbreak and other unrealized pathogens. MBio 2019;10(6):e0287719. - PMC - PubMed
Sahan 2020 {published data only}
    1. Sahan ZA, Hamed SL. Molecular detection of extended-spectrum β-lactamases-producer Serratia marcescens causing neonatal sepsis in Iraq. International Journal of Research in Pharmaceutical Sciences 2020;11(4):5803-8.
Samies 2019 {published data only}
    1. Samies N, Jariwala R, Boppana S, Pinninti S. Utility of surface and blood polymerase chain reaction assays in identifying infants with neonatal herpes simplex virus infection. Pediatric Infectious Disease Journal 2019;38(11):1138-40. - PubMed
Sasso 2016 {published data only}
    1. Sasso M, Chastang-Dumas E, Bastide S, Alonso S, Lechiche C, Bourgeois N, et al. Performances of four real-time PCR assays for diagnosis of pneumocystis Jirovecii pneumonia. Journal of Clinical Microbiology 2016;54(3):625-30. - PMC - PubMed
Savini 2018 {published data only}
    1. Savini V, Marrollo R, Verzulli S, Pontieri E, Fazii P, Creti R. Genexpert-negative group b streptococci detected by accelerate pheno(tm) system. Veterinary Microbiology 2018;217:64-5. - PubMed
Schmoch 2021 {published data only}
    1. Schmoch T, Westhoff JH, Decker SO, Skarabis A, Hoffmann GF, Dohna-Schwake C, et al. Next-generation sequencing diagnostics of bacteremia in pediatric sepsis. Medicine 2021;100(25):e26403. - PMC - PubMed
Shaat 2013a {published data only}
    1. Shaat SS, El Shazly SA, Badr EM, Barakat SS, Hashish MH. Role of polymerase chain reaction as an early diagnostic tool for neonatal bacterial sepsis. Journal of the Egyptian Public Health Association 2013;88(3):160-4. [DOI: 10.1097/01.EPX.0000441294.14692.4c] - DOI - PubMed
Shabani 2018 {published data only}
    1. Shabani A, Makvandi M, Samarbafzadeh A, Teimoori A, Rasti M, Karami C, et al. Echovirus 30 and coxsackievirus A9 infection among young neonates with sepsis in Iran. Iranian Journal of Microbiology 2018;10(4):258-65. - PMC - PubMed
Shang 2001 {published data only}
    1. Shang S, Chen Z, Yu X. Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemia. Acta Paediatrica 2001;90(2):179-83. [PMID: ] - PubMed
Sharma 2021 {published data only}
    1. Sharma S, Acharya J, Caugant DA, Banjara MR, Ghimire P, Singh A. Detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in culture negative cerebrospinal fluid samples from meningitis patients using a multiplex polymerase chain reaction in Nepal. Infectious Disease Reports 2021;13(1):173-80. - PMC - PubMed
Shaw 2017 {published data only}
    1. Shaw E, Bullivant J, Ridgeway E, Clark S, Pilling E. Absence of DNA polymerase chain reaction in neonatal blood cultures could lead to earlier discharge, better antibiotic stewardship and significant financial saving. Archives of Disease in Childhood 2017;102:A192-A-193.
Shen 2004 {published data only}
    1. Shen DX, Du J, Feng ZC. Rapid diagnosis of common pathogenic bacteria infection in newborn infants by 16SrDNA oligonucleotide array. Zhonghua Er Ke za Zhi. Chinese Journal of Pediatrics 2004;42(9):668-72. [PMID: ] - PubMed
Sinnar 2020 {published data only}
    1. Sinnar SA, Schiff SJ. The problem of microbial dark matter in neonatal sepsis. Emerging Infectious Diseases 2020;26(11):2543-8. - PMC - PubMed
Stranieri 2016 {published data only}
    1. Stranieri I, Kanunfre KA, Rodrigues JC, Yamamoto L, Nadaf MI, Palmeira P, et al. Usefulness of a 16S rDNA real-time PCR to monitor neonatal sepsis and to assist in medical decision to discontinue antibiotics. Journal of Maternal-Fetal & Neonatal Medicine 2016;29(13):2141-4. - PMC - PubMed
Suryani 2020 {published data only}
    1. Suryani UH, Rezano A, Sribudiani Y. Polymerase chain reaction multiplication for the detection of bacterial isolates causing neonatal sepsis. Open Access Macedonian Journal of Medical Sciences 2020;8:623-8.
Suzuki 2021 {published data only}
    1. Suzuki Y, Aizawa Y, Izumita R, Habuka R, Watanabe K, Saitoh A. PCR detection rates for serum and cerebrospinal fluid from neonates and young infants infected with human parechovirus 3 and enteroviruses. Journal of Clinical Virology 2021;135:104736. - PubMed
Tao 2022 {published data only}
    1. Tao Y, Yan H, Liu Y, Zhang F, Luo L, Zhou Y, et al. Diagnostic performance of metagenomic next-generation sequencing in pediatric patients: a retrospective study in a large children's medical center. Clinical Chemistry 2022;68(8):1031-41. [DOI: 10.1093/clinchem/hvac067] - DOI - PubMed
Tschiedel 2012 {published data only}
    1. Tschiedel E, Steinmann J, Buer J, Onnebrink JG, Felderhoff-Muser U, Rath PM, et al. Results and relevance of molecular detection of pathogens by SeptiFast – a retrospective analysis in 75 critically ill children. Klinische Padiatrie 2012;224(1):12-6. [PMID: ] - PubMed
Walls 2017 {published data only}
    1. Walls T, McSweeney A, Anderson T, Jennings LC. Multiplex-PCR for the detection of viruses in the CSF of infants and young children. Journal of Medical Virology 2017;89(3):559-61. - PubMed
Wang 2022 {published data only}
    1. Wang ZX, Wu X, Xu J, Ye YZ, Han SZ, Ye LJ, et al. Value of metagenomic next-generation sequencing in the etiology diagnosis of bacterial meningitis in children. Zhonghua Er Ke za Zhi 2022;60(8):769-73. [DOI: 10.3760/cma.j.cn112140-20220317-00214] - DOI - PubMed
Yang 2021 {published data only}
    1. Yang Q, He B, Chen C, Wang H, Li W, Xue X, et al. A rapid, visible, and highly sensitive method for recognizing and distinguishing invasive fungal infections via CCP-FRET technology. ACS Infectious Diseases 2021;7(10):2816-25. - PubMed
Yu 2019 {published data only}
    1. Yu R, Zhou Q, Jiang S, Mei Y, Wang M. Combination of 16S rRNA and procalcitonin in diagnosis of neonatal clinically suspected sepsis. Journal of International Medical Research 2019;48(3):300060519892418. - PMC - PubMed
Yu 2020 {published data only}
    1. Yu R, Zhou Q, Jiang S, Mei Y, Wang M. Combination of 16S rRNA and procalcitonin in diagnosis of neonatal clinically suspected sepsis. Journal of International Medical Research 2020;48(3):300060519892418. - PMC - PubMed
Źródłowski 2018 {published data only}
    1. Źródłowski TW, Jurkiewicz-Badacz D, Sroka-Oleksiak A, Salamon D, Bulanda M, Gosiewski T. Comparison of PCR, fluorescent in situ hybridization and blood cultures for detection of bacteremia in children and adolescents during antibiotic therapy. Polish Journal of Microbiology 2018;67(4):479-86. - PMC - PubMed
Zurina 2021 {published data only}
    1. Zurina Z, Hoo NP, Amin-Nordin S, Joseph NM, Nunis MA. Diagnosis of neonatal meningitis: is it time to use polymerase chain reaction? Medical Journal of Malaysia 2021;76(1):101-3. - PubMed

References to ongoing studies

ChiCTR2100047120 {published data only}
    1. ChiCTR2100047120. Prospective study on the value of metagenomic second generation sequencing in the diagnosis and treatment of neonatal central nervous system infectious diseases. https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2100047120 (first received 8 June 2021).
Dohna‐Schwake 2013 {published data only}
    1. Dohna-Schwake. Comparison of multiplex PCR assay for detection of bacterial and fungal DNA and blood cultures in children with suspected sepsis under antibiotic treatment. https://drks.de/search/en/trial/DRKS00004694/details (first registered 7 February 2013).
NCT05416918 {published data only}
    1. NCT05416918. Clinical value of metagenomic sequencing in neonatal sepsis. https://clinicaltrials.gov/study/NCT05416918 (first received 2 June 2022).
NCT05763680 {published data only}
    1. NCT05763680. Molecular culture for the diagnosis of neonatal sepsis. https://clinicaltrials.gov/study/NCT05763680 (first received 16 February 2023).
Vivek 2018 {published data only}
    1. Raju. A clinical study to find out ability of polymerase chain reaction test in detecting infection in neonates. https://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=24635 2018.

Additional references

Adams‐Chapman 2006
    1. Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Current Opinion in Infectious Diseases 2006;19(3):290-7. [PMID: ] - PubMed
Blommendahl 2002
    1. Blommendahl J, Janas M, Laine S, Miettinen A, Ashorn P. Comparison of procalcitonin with CRP and differential white blood cell count for diagnosis of culture-proven neonatal sepsis. Scandinavian Journal of Infectious Diseases 2002;34(8):620-2. [PMID: ] - PubMed
Bossuyt 2006
    1. Bossuyt PM, Irwig L, Craig J, Glasziou P. Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ (Clinical Research Ed.) 2006;332(7549):1089-92. [PMID: ] - PMC - PubMed
Brozanski 2006
    1. Brozanski BS, Jones JG, Krohn MJ, Jordan JA. Use of polymerase chain reaction as a diagnostic tool for neonatal sepsis can result in a decrease in use of antibiotics and total neonatal intensive care unit length of stay. Journal of Perinatology 2006;26(11):688-92. - PubMed
Canadian Neonatal Network 2014
    1. Shah P, Yoon EW, Chan P, Members of the Annual Report Review Committee. Annual report of the Canadian Neonatal Network, 2004. www.canadianneonatalnetwork.org/Portal/LinkClick.aspx?fileticket=eGgxmMu... (accessed 18 February 2017).
Chiesa 2004
    1. Chiesa C, Panero A, Osborn JF, Simonetti AF, Pacifico L. Diagnosis of neonatal sepsis: a clinical and laboratory challenge. Clinical Chemistry 2004;50(2):279-87. [PMID: ] - PubMed
Dong 2015
    1. Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Archives of Disease in Childhood. Fetal and Neonatal Edition 2015;100(3):F257-63. - PMC - PubMed
Flannery 2022
    1. Flannery DD, Edwards EM, Coggins SA, Horbar JD, Puopolo KM. Late-onset sepsis among very preterm infants. Pediatrics 2022;150(6):e2022058813. [DOI: 10.1542/peds.2022-058813] - DOI - PMC - PubMed
Gopalakrishna 2014
    1. Gopalakrishna G, Mustafa RA, Davenport C, Scholten RJ, Hyde C, Brozek J, et al. Applying Grading of Recommendations Assessment, Development and Evaluation (GRADE) to diagnostic tests was challenging but doable. Journal of Clinical Epidemiology 2014;67(7):760-8. - PubMed
Harbord 2007
    1. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007;8(2):239-51. [PMID: ] - PubMed
Harbord 2008
    1. Harbord RM, Whiting P, Sterne JA, Egger M, Deeks JJ, Shang A, et al. An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary. Journal of Clinical Epidemiology 2008;61(11):1095-103. [PMID: ] - PubMed
Harbord 2009
    1. Harbord RM, Whiting P. Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression. Stata Journal 2009;9(2):211-29.
Hornik 2012
    1. Hornik CP, Benjamin DK, Benjamin DK, Li J, Clark RH, Cohen-Wolkowiez M, et al. Use of the complete blood cell count in late-onset neonatal sepsis. Pediatric Infectious Disease Journal 2012;31(8):803-7. [PMID: ] - PMC - PubMed
Isaacman 1996
    1. Isaacman DJ, Karasic RB, Reynolds EA, Kost SI. Effect of number of blood cultures and volume of blood on detection of bacteremia in children. Pediatrics 1996;128(2):190-5. [PMID: ] - PubMed
Jordan 2010
    1. Jordan JA. Molecular diagnosis of neonatal sepsis. Clinics in Perinatology 2010;37(2):411-9. [PMID: ] - PubMed
Leeflang 2008
    1. Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of diagnostic test accuracy. Annals of Internal Medicine 2008;149(12):889-97. [PMID: ] - PMC - PubMed
Macaskill 2010
    1. Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y. Chapter 10: Analysing and presenting results. In: Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0.0. The Cochrane Collaboration, 2010. Available from srdta.cochrane.org/.
Ng 1997
    1. Ng PC, Cheng SH, Chui KM, Fok TF, Wong MY, Wong W, et al. Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Archives of Disease in Childhood Fetal and Neonatal Edition 1997;77(3):F221-7. [PMID: ] - PMC - PubMed
Ng 2012
    1. Ng PC, Lam HS. Biomarkers in neonatology: the next generation of tests. Neonatology 2012;102(2):145-51. [PMID: ] - PubMed
Pammi 2011
    1. Pammi M, Flores A, Leeflang M, Versalovic J. Molecular assays in the diagnosis of neonatal sepsis: a systematic review and meta-analysis. Pediatrics 2011;128(4):e973-85. [PMID: ] - PubMed
Reitsma 2009
    1. Reitsma JB, Whiting P, Vlassov VV, Leeflang MM, Deeks JJ. Chapter 9: Assessing methodological quality. In: Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0.0. The Cochrane Collaboration, 2009. Available from srdta.cochrane.org/.
Relman 1999
    1. Relman DA. The search for unrecognized pathogens. Science 1999;284(5418):1308-10. [PMID: ] - PubMed
RevMan 2024 [Computer program]
    1. Review Manager (RevMan). Version 7.12.0. The Cochrane Collaboration, 2024. Available at https://revman.cochrane.org.
Rodriguez‐Creixems 2008
    1. Rodriguez-Creixems M, Alcala L, Munoz P, Cercenado E, Vicente T, Bouza E. Bloodstream infections: evolution and trends in the microbiology workload, incidence, and etiology, 1985–2006. Medicine 2008;87(4):234-49. [PMID: ] - PubMed
Schelonka 1996
    1. Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. Journal of Pediatrics 1996;129(2):275-8. [PMID: ] - PubMed
Schünemann 2016
    1. Schünemann HJ, Mustafa R, Brozek J, Santesso N, Alonso-Coello P, Guyatt G, et al, GRADE Working Group. GRADE Guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health. Journal of Clinical Epidemiology 2016;76:89-98. - PubMed
Spijker 2023
    1. Spijker R, Dinnes J, Glanville J, Eisinga A. Chapter 6: Searching for and selecting studies. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 2.0 (updated July 2023). Cochrane, 2023. Available from https://training.cochrane.org/handbook-diagnostic test-accuracy/current.
Stata 2011 [Computer program]
    1. Stata Statistical Software: Release 11. College Station, TX, USA: StataCorp, 2011. Available from https://www.stata.com.
Stoll 2002
    1. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 2002;110(2 Pt 1):285-91. [PMID: ] - PubMed
Stoll 2004
    1. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004;292(19):2357-65. [PMID: ] - PubMed
Stoll 2016
    1. Stoll BJ. Early-onset neonatal sepsis: a continuing problem in need of novel prevention strategies. Pediatrics 2016;138(6):e20163038. [DOI: 10.1542/peds.2016-3038] - DOI - PubMed
Stoll 2020
    1. Stoll BJ, Puopolo KM, Hansen NI, Sánchez PJ, Bell EF, Carlo WA, et al, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatrics 2020;174(7):e200593. - PMC - PubMed
Trenti 2016
    1. Trenti T, Schunemann HJ, Plebani M. Developing GRADE outcome-based recommendations about diagnostic tests: a key role in laboratory medicine policies. Clinical Chemistry and Laboratory Medicine 2016;54(4):535-43. - PubMed
van Enst 2014
    1. Enst WA, Ochodo E, Scholten R, Hooft L, Leeflang MA. Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiologic study. BMC Medical Research Methodology 2014;14:70. [PMID: ] - PMC - PubMed
Venkatesh 2010
    1. Venkatesh M, Flores A, Luna RA, Versalovic J. Molecular microbiological methods in the diagnosis of neonatal sepsis. Expert Reviews in Anti Infective Therapy 2010;8(9):1037-48. [PMID: ] - PMC - PubMed
Verboon‐Maciolek 2006
    1. Verboon-Maciolek MA, Thijsen SF, Hemels MA, Menses M, Loon AM, Krediet TG, et al. Inflammatory mediators for the diagnosis and treatment of sepsis in early infancy. Pediatric Research 2006;59(3):457-61. [PMID: ] - PubMed
Whiting 2011
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 2011;155(8):529-36. [PMID: ] - PubMed
Woese 1987
    1. Woese CR. Bacterial evolution. Microbiology Reviews 1987;51(2):221-71. [PMID: ] - PMC - PubMed

References to other published versions of this review

Pammi 2015
    1. Pammi M, Flores A, Versalovic J, Leeflang MM. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database of Systematic Reviews 2015, Issue 11. Art. No: CD011926. [DOI: 10.1002/14651858.CD011926] - DOI - PMC - PubMed
Pammi 2017
    1. Pammi M, Flores A, Versalovic J, Leeflang MM. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database of Systematic Reviews 2017, Issue 2. Art. No: CD011926. [DOI: 10.1002/14651858.CD011926.pub2] - DOI - PMC - PubMed

LinkOut - more resources