Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May;31(25):e202500089.
doi: 10.1002/chem.202500089. Epub 2025 Mar 31.

The Use of Deep Eutectic Solvents for the Synthesis of Iron Oxides Nanoparticles: A Driving Force for Materials Properties

Affiliations

The Use of Deep Eutectic Solvents for the Synthesis of Iron Oxides Nanoparticles: A Driving Force for Materials Properties

Francesco Gabriele et al. Chemistry. 2025 May.

Abstract

In this study, we explored the use of Deep Eutectic Solvents (DESs) as a green and sustainable alternative for the synthesis of Iron Oxide Nanoparticles (IONs). Six different binary mixtures of Hydrogen Bond Acceptors (HBAs) and Donors (HBDs) were prepared and thoroughly characterized to investigate how their components and physicochemical properties influence the structure, morphology, and magnetic properties of the resulting IONs. In addition, the role of DESs was assessed using ATR-MIR spectroscopy, providing insights into HBA-HBD interactions with iron precursors. The study highlights the critical role of DES constituents, particularly the interactions between HBAs and HBDs, in directing nanoparticle size, structure, and morphology. Indeed, our results demonstrate that the choice of DES significantly impacts the crystalline phase of iron oxide nanoparticles, yielding either magnetite (Fe₃O₄) or hematite (α-Fe₂O₃). These findings established a robust framework for leveraging DES in nanomaterial synthesis, paving the way for more environmentally friendly approaches in diverse industrial and scientific applications.

Keywords: Deep Eutectic Solvents; Hematite; IONs; Magnetite; Structural oriented synthesis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Behavior of density (a), molar conductivity (b), and viscosity (c), of the five studied DESs between 50°C and 90°C: ChCl:GA (3:1) (formula image), ChCl:TEG (1:3) (formula image), ChCl:U (1:2) (formula image), GC:TEG (1:2) (formula image), and GC:U (1:2) (formula image).
Figure 2
Figure 2
Walden plot of ChCl:GA (3:1) (formula image), ChCl:TEG (1:3) (formula image), ChCl:U (1:2) (formula image), GC:TEG (1:3) (formula image), and GC:U (1:2)ChCl:GA (3:1) (formula image); the black straight line is referred to a 0.1 M solution of KCl.
Figure 3
Figure 3
SEM images collected simultaneously in transmission (left side of each insert) and with backscattered electrons (right side of each insert) of samples ION‐1 (highlighted in blue) and ION‐2 (highlighted in red). In Parts a–c samples are displayed with a 50 kx magnification; in Parts b–d the same samples are displayed with a 150 kx magnification.
Figure 4
Figure 4
PXRD patterns of IONs samples reported according to their crystal structure: magnetite (part a) and hematite (part b).
Figure 5
Figure 5
Part (a): AGM curves of the whole series of IONs samples. Part (b): magnification of the magnetization curves relative to samples ION‐2 (red dash) and ION‐3 (black dots).
Figure 6
Figure 6
Part (a): ATR‐MIR spectra (normalized with respect to the 1060 cm−1 peak of TEG) of GC:TEG (1:2) alone (formula image), in interaction with FeCl2∙4H2O (formula image), and in interaction with FeCl3∙6H2O (formula image). Part (b): ATR‐MIR spectra (normalized with respect to the 1060 cm−1 peak of TEG) of ChCl:TEG (1:3) alone (∙), in interaction with FeCl2∙4H2O (formula image), and in interaction with FeCl3∙6H2O (formula image). Dotted curves are referred to DES components, namely TEG (formula image), GC (formula image), and ChCl (formula image). Full spectra are reported in Figure S6.

Similar articles

References

    1. a) Lu A. H., Salabas E. L., Schüth F., Angew. Chem., Int. Ed. 2007, 46, 1222. - PubMed
    2. b) Selim M. M., El‐Safty S., Tounsi A., Shenashen M., APL Mater. 2024, 12, 010601.
    3. c) Ali A., Shah T., Ullah R., Zhou P. F., Guo M. L., Ovais M., Tan Z. Q., Rui Y. K., Front. Chem. 2021, 9, 629054. - PMC - PubMed
    4. d) Indira T. K., Lakshmi P. K., Int. J. Pharm. Sci. Nanotechnol. 2010, 3, 1035.
    5. e) Mohammed L., Gomaa H. G., Ragab D., Zhu J., Particuology 2017, 30, 1.
    6. f) Rezaei B., Yari P., Sanders S. M., Wang H. T., Chugh V. K., Liang S., Mostufa S., Xu K. L., Wang J. P., Gómez‐Pastora J., Wu K., Small 2024, 20, 2304848. - PubMed
    7. g) Zhang K., Song X. L., Liu M., Chen M. H., Li J., Han J. L., Water 2023, 15, 3077.
    1. a) Lazzarini A., Colaiezzi R., Galante A., Passacantando M., Capista D., Ferella F., Alecci M., Crucianelli M., Results Chem. 2022, 4, 100387.
    2. b) Gupta A. K., Wells S., IEEE Trans. Nanobiosci. 2004, 3, 66. - PubMed
    3. c) Anik M. I., Hossain M. K., Hossain I., Mahfuz A., Rahman M. T., Ahmed I., Nano Sel. 2021, 2, 1146.
    4. d) Persigehl T., Bieker R., Matuszewski L., Wall A., Kessler T., Kooijman H., Meier N., Ebert W., Berdel W. E., Heindel W., Mesters R. M., Bremer C., Radiology 2007, 244, 449. - PubMed
    5. e) Nelson N. R., Port J. D., Pandey M. K., J. Nanotheranostics 2020, 1, 105.
    1. a) Noh S. H., Moon S. H., Shin T. H., Lim Y., Cheon J., Nano Today 2017, 13, 61.
    2. b) Liu X. L., Zhang Y. F., Wang Y. Y., Zhu W. J., Li G. L., Ma X. W., Zhang Y. H., Chen S. Z., Tiwari S., Shi K. J., Zhang S. W., Fan H. M., Zhao Y. X., Liang X. J., Theranostics 2020, 10, 3793. - PMC - PubMed
    1. a) Prucek R., Tucek J., Kilianová M., Panácek A., Kvítek L., Filip J., Kolár M., Tománková K., Zboril R., Biomaterials 2011, 32, 4704. - PubMed
    2. b) Nosrati H., Salehiabar M., Davaran S., Ramazani A., Manjili H. K., Danafar H., Res. Chem. Intermed. 2017, 43, 7423.
    3. c) Quan K. C., Zhang Z. X., Chen H., Ren X. X., Ren Y. J., Peterson B. W., van der Mei H. C., Busscher H. J., Small 2019, 15, 1902313. - PubMed
    1. a) Jin Y. J., Liu F., Shan C., Tong M. P., Hou Y. L., Water Res. 2014, 50, 124. - PubMed
    2. b) Kilianová M., Prucek R., Filip J., Kolarík J., Kvítek L., Panácek A., Tucek J., Zboril R., Chemosphere 2013, 93, 2690. - PubMed
    3. c) Mushtaq F., Chen X. Z., Torlakcik H., Steuer C., Hoop M., Siringil E. C., Marti X., Limburg G., Stipp P., Nelson B. J., Pané S., Adv. Mater. 2019, 31, 1901378. - PubMed

LinkOut - more resources