Imine-Based Transient Supramolecular Polymers
- PMID: 40106347
- PMCID: PMC11969532
- DOI: 10.1021/jacs.5c00274
Imine-Based Transient Supramolecular Polymers
Abstract
Systems that change properties upon exposure to chemical stimuli offer the interesting prospect of (partially) mimicking the functions of living systems. Over the past decade, numerous supramolecular systems whose chemical composition and properties are regulated by the dissipation of chemical fuels have been reported. These systems are typically based on the transient transformation of a "dormant" species into an active, self-assembling supramolecular monomer. The process is powered by fuel consumption and terminates upon fuel depletion, restoring the initial dormant state. Previously reported out-of-equilibrium supramolecular polymerizations relied on the activation of the dormant species by adding or removing small structural units to enable supramolecular polymerization. Here, we present an approach that combines the reversibility of dynamic covalent chemistry and supramolecular chemistry to trigger transient supramolecular polymerizations by "recycling" the components of a dynamic combinatorial library (DCL). Treatment of an equilibrated DCL of aliphatic imines and aromatic amines with an activated carboxylic acid (ACA) generates a dissipative dynamic combinatorial library of aromatic imines and protonated aliphatic amines. The transient acidic conditions enable the creation of a supramolecular polymer held together by interactions between the protonated aliphatic amines and the crown ether moieties embedded in the scaffold of the aromatic imines. Thus, fuel dissipation reshuffles the chemical connectivity and enables the temporary transformation of a purely covalent (polymeric) system into a supramolecular polymer. We demonstrate the strategy using two different covalent dormant feedstocks consisting of a diimine macrocycle involving a calix[4]arene scaffold and a distribution of imine (cyclo)oligomers derived from an isophthalaldehyde skeleton.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Hartlieb M.; Mansfield E. D. H.; Perrier S. A guide to supramolecular polymerizations. Polym. Chem. 2020, 11, 1083–1110. 10.1039/C9PY01342C. - DOI
- García F.; Korevaar P. A.; Verlee A.; Meijer E. W.; Palmans A. R. A.; Sánchez L. The influence of π-conjugated moieties on the thermodynamics of cooperatively self-assembling tricarboxamides. Chem. Commun. 2013, 49, 8674–8676. 10.1039/c3cc43845g. - DOI - PubMed
- De Greef T. F. A.; Smulders M. M. J.; Wolffs M.; Schenning A. P. H. J.; Sijbesma R. P.; Meijer E. W. Supramolecular Polymerization. Chem. Rev. 2009, 109, 5687–5754. 10.1021/cr900181u. - DOI - PubMed
- de Greef T. F. A.; Meijer E. W. Supramolecular polymers. Nature 2008, 453, 171–173. 10.1038/453171a. - DOI - PubMed
- Brunsveld L.; Folmer B. J. B.; Meijer E. W.; Sijbesma R. P. Supramolecular Polymers. Chem. Rev. 2001, 101, 4071–4097. 10.1021/cr990125q. - DOI - PubMed
-
- Yanagisawa Y.; Nan Y.; Okuro K.; Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359, 72–76. 10.1126/science.aam7588. - DOI - PubMed
- Nakahata M.; Mori S.; Takashima Y.; Yamaguchi H.; Harada A. Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds. Chem. 2016, 1, 766–775. 10.1016/j.chempr.2016.09.013. - DOI
- Würthner F.; Saha-Möller C. R.; Fimmel B.; Ogi S.; Leowanawat P.; Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem. Rev. 2016, 116, 962–1052. 10.1021/acs.chemrev.5b00188. - DOI - PubMed
- Erbas-Cakmak S.; Leigh D. A.; McTernan C. T.; Nussbaumer A. L. Artificial Molecular Machines. Chem. Rev. 2015, 115, 10081–10206. 10.1021/acs.chemrev.5b00146. - DOI - PMC - PubMed
- Aida T.; Meijer E. W.; Stupp S. I. Functional Supramolecular Polymers. Science 2012, 335, 813–817. 10.1126/science.1205962. - DOI - PMC - PubMed
-
- Borsley S.; Leigh D. A.; Roberts B. M. W. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew. Chem., Int. Ed. 2024, 63, e202400495 10.1002/anie.202400495. - DOI - PubMed
- Del Giudice D.; Spatola E.; Valentini M.; Ercolani G.; Di Stefano S. Dissipative Dynamic Libraries (DDLs) and Dissipative Dynamic Combinatorial Chemistry (DDCC). ChemSystemsChem 2022, 4, e202200023 10.1002/syst.202200023. - DOI
- Otto S. An Approach to the De Novo Synthesis of Life. Acc. Chem. Res. 2022, 55, 145–155. 10.1021/acs.accounts.1c00534. - DOI - PMC - PubMed
- Out-of-Equilibrium (Supra)molecular Systems and Materials; Giuseppone N., Walther A., Eds.; Wiley-VCH, 2021.
- Pappas C. G. A sound approach to self-assembly. Nat. Chem. 2020, 12, 784–785. 10.1038/s41557-020-0526-0. - DOI - PubMed
- Walther A. Viewpoint: From Responsive to Adaptive and Interactive Materials and Materials Systems: A Roadmap. Adv. Mater. 2020, 32, 1905111. 10.1002/adma.201905111. - DOI - PMC - PubMed
- Ragazzon G.; Prins L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 2018, 13, 882–889. 10.1038/s41565-018-0250-8. - DOI - PubMed
-
- Olivieri E.; Gasch B.; Quintard G.; Naubron J.-V.; Quintard A. Dissipative Acid-Fueled Reprogrammable Supramolecular Materials. ACS Appl. Mater. Interfaces 2022, 14, 24720–24728. 10.1021/acsami.2c01608. - DOI - PubMed
- Mishra A.; Dhiman S.; George S. J. ATP-Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angew. Chem., Int. Ed. 2021, 60, 2740–2756. 10.1002/anie.202006614. - DOI - PubMed
- Singh N.; Lainer B.; Formon G. J. M.; De Piccoli S.; Hermans T. M. Re-programming Hydrogel Properties Using a Fuel-Driven Reaction Cycle. J. Am. Chem. Soc. 2020, 142, 4083–4087. 10.1021/jacs.9b11503. - DOI - PubMed
- Bal S.; Das K.; Ahmed S.; Das D. Chemically Fueled Dissipative Self-Assembly that Exploits Cooperative Catalysis. Angew. Chem., Int. Ed. 2019, 58, 244–247. 10.1002/anie.201811749. - DOI - PubMed
- Rieß B.; Boekhoven J. Applications of Dissipative Supramolecular Materials with a Tunable Lifetime. ChemNanoMat 2018, 4, 710–719. 10.1002/cnma.201800169. - DOI
- De S.; Klajn R. Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels. Adv. Mater. 2018, 30, 1706750. 10.1002/adma.201706750. - DOI - PubMed
- Tena-Solsona M.; Rieß B.; Grötsch R. K.; Löhrer F. C.; Wanzke C.; Käsdorf B.; Bausch A. R.; Müller-Buschbaum P.; Lieleg O.; Boekhoven J. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 2017, 8, 15895. 10.1038/ncomms15895. - DOI - PMC - PubMed
- van Rossum S. A. P.; Tena-Solsona M.; van Esch J. H.; Eelkema R.; Boekhoven J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 2017, 46, 5519–5535. 10.1039/C7CS00246G. - DOI - PubMed
- Maiti S.; Fortunati I.; Ferrante C.; Scrimin P.; Prins L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 2016, 8, 725–731. 10.1038/nchem.2511. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous
