Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 17:S2090-1232(25)00191-2.
doi: 10.1016/j.jare.2025.03.031. Online ahead of print.

MG53 protects against septic cardiac dysfunction by ubiquitinating ATF2

Affiliations
Free article

MG53 protects against septic cardiac dysfunction by ubiquitinating ATF2

Miao Tian et al. J Adv Res. .
Free article

Abstract

Introduction: Septic cardiac dysfunction (SCD) is the most common complication of sepsis, which has become the primary cause of death in intensive care units. The muscle-specific protein mitsugumin-53 (MG53) has been identified to protect cell integrity as a "Molecular Band-Aid".

Objectives: The recombinant human MG53 (rhMG53) pretreatment has been reported to prevent cardiac function damage caused by cecal ligation and puncture (CLP). However, whether or not MG53 protects against SCD remains to be further clarified.

Methods: C57BL/6J mice were intraperitoneally injected with lipopolysaccharide (LPS) to generate the SCD model. MG53 was overexpressed by intravenously injected adeno-associated virus, and the rhMG53 was administrated intraperitoneally. The cardiac function was evaluated by echocardiography, and the cardiac inflammation was assessed through ELISA and Western blot. The mechanisms of MG53 were studied by quantitative real-time PCR (qPCR) and co-immunoprecipitation (co-IP).

Results: Our present study found that MG53 expression was lower in hearts from SCD mice than controls. Overexpression or exogenous MG53 treatment alleviated cardiac dysfunction, improved survival rate in SCD mice, accompanied with improved pathological changes, reduced cardiomyocyte apoptosis, and lowered inflammatory factor levels in serum or hearts. Mechanistically, MG53 inhibited TLR4 transcriptional activity by ubiquitinating ATF2, an essential transcriptional factor for TLR4, which ultimately reduced the expression of TLR4.

Conclusion: MG53 protect the cardiac function against sepsis by down-regulation of TLR4 expression, via ubiquitination of ATF2, a TLR4 transcriptional factor, which might be a promising therapeutic approach for septic cardiac dysfunction.

Keywords: ATF2; Apoptosis; Inflammation; MG53; Septic cardiac dysfunction; TLR4.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources