Pyruvate metabolism enzyme DLAT promotes tumorigenesis by suppressing leucine catabolism
- PMID: 40112809
- DOI: 10.1016/j.cmet.2025.02.008
Pyruvate metabolism enzyme DLAT promotes tumorigenesis by suppressing leucine catabolism
Abstract
Pyruvate and branched-chain amino acid (BCAA) metabolism are pivotal pathways in tumor progression, yet the intricate interplay between them and its implications for tumor progression remain elusive. Our research reveals that dihydrolipoamide S-acetyltransferase (DLAT), a pyruvate metabolism enzyme, promotes leucine accumulation and sustains mammalian target of rapamycin (mTOR) complex activation in hepatocellular carcinoma (HCC). Mechanistically, DLAT directly acetylates the K109 residue of AU RNA-binding methylglutaconyl-coenzyme A (CoA) hydratase (AUH), a critical enzyme in leucine catabolism, inhibiting its activity and leading to leucine accumulation. Notably, DLAT upregulation correlates with poor prognosis in patients with HCC. Therefore, we developed an AUHK109R-mRNA lipid nanoparticles (LNPs) therapeutic strategy, which effectively inhibits tumor growth by restoring leucine catabolism and inhibiting mTOR activation in vivo. In summary, our findings uncover DLAT's unexpected role as an acetyltransferase for AUH, suppressing leucine catabolism. Restoring leucine catabolism with AUHK109R-mRNA LNP effectively inhibits HCC development, highlighting a novel direction for cancer research.
Keywords: DLAT; LNP-mRNA; acetylation; hepatocellular carcinoma; leucine catabolism.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous
