Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 12:758:151619.
doi: 10.1016/j.bbrc.2025.151619. Epub 2025 Mar 13.

The experimental study of the effect of fluid shear force on the migration rate of human umbilical vein endothelial cells

Affiliations

The experimental study of the effect of fluid shear force on the migration rate of human umbilical vein endothelial cells

Dong Chen et al. Biochem Biophys Res Commun. .

Abstract

Background: The vascular endothelium is a continuous monolayer of flattened cells that cover the surface of the lumen of blood vessels. Endothelial cell damage can readily result in thrombus formation and thickening of the intima. Accelerating the migration and repair of peripheral endothelial cells is essential. Shear force is an important hydrodynamic factor affecting endothelial cell function. We aimed to investigate the effect of different shear forces on the migration rate of endothelial cells.

Methods: Human umbilical vein endothelial cells (HUVECs) were used instead of endothelial cells to establish a cell scratch model. Plate flow chambers were then used to intervene in HUVECs growth with different shear force magnitudes (4 dyn/cm2, 8 dyn/cm2, and 12 dyn/cm2). The healing rate of the scratches was observed under light microscopy, and finally the expression of RhoA and CDC42 was detected by molecular experiments. The expression of CDC42 factor was inhibited by siRNA interference, and the wound healing ability of HUVECs in the control group and the CDC42 inhibition group under different fluid shear forces was observed under light microscopy.

Results: High shear forces promote the healing of scratches. In addition, relatively strong shear forces promoted the expression of cytokines RhoA and CDC42. Compared with untransfected HUVECs, HUVECs with inhibition of CDC42 expression by siRNA interference showed weak migration ability in different fluid shear groups.

Conclusion: Increasing fluid shear force in a range (4-12 dyn/cm2) contributes to endothelial cell migration. Inhibition of CDC42 expression weakened the migration ability of HUVECs under different fluid shear forces.

Keywords: Cell migration; Fluid shear force; Human umbilical vein endothelial cells; Rho GTPase; Wound healing.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

MeSH terms