β-hydroxybutyrate facilitates mitochondrial-derived vesicle biogenesis and improves mitochondrial functions
- PMID: 40118051
- DOI: 10.1016/j.molcel.2025.02.022
β-hydroxybutyrate facilitates mitochondrial-derived vesicle biogenesis and improves mitochondrial functions
Abstract
Mitochondrial dynamics and metabolites reciprocally influence each other. Mitochondrial-derived vesicles (MDVs) transport damaged mitochondrial components to lysosomes or the extracellular space. While many metabolites are known to modulate mitochondrial dynamics, it is largely unclear whether they are involved in MDV generation. Here, we discovered that the major component of ketone body, β-hydroxybutyrate (BHB), improved mitochondrial functions by facilitating the biogenesis of MDVs. Mechanistically, BHB drove specific lysine β-hydroxybutyrylation (Kbhb) of sorting nexin-9 (SNX9), a key regulator of MDV biogenesis. Kbhb increased SNX9 interaction with inner mitochondrial membrane (IMM)/matrix proteins and promoted the formation of IMM/matrix MDVs. SNX9 Kbhb was not only critical for maintaining mitochondrial homeostasis in cells but also protected mice from alcohol-induced liver injury. Altogether, our research uncovers the fact that metabolites influence the formation of MDVs by directly engaging in post-translational modifications of key protein machineries and establishes a framework for understanding how metabolites regulate mitochondrial functions.
Keywords: MDV; PTMs; metabolite; mitochondrial functions.
Copyright © 2025 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
