GlycoRNA-rich, neutrophil membrane-coated, siMT1-loaded nanoparticles mitigate abdominal aortic aneurysm progression by inhibiting the formation of neutrophil extracellular traps
- PMID: 40124343
- PMCID: PMC11929896
- DOI: 10.1016/j.mtbio.2025.101630
GlycoRNA-rich, neutrophil membrane-coated, siMT1-loaded nanoparticles mitigate abdominal aortic aneurysm progression by inhibiting the formation of neutrophil extracellular traps
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular condition. Currently, there are no clinically available pharmacological interventions that can stop the progression of AAA, primarily due to the incomplete understanding of its pathogenesis and the absence of effective drug delivery systems. The present study aimed to develop a targeted therapy for AAA through a nanomedicine approach involving site-specific regulation of neutrophil extracellular trap (NET)-related pathological vascular remodeling. We found that metallothionein 1 (MT1) was upregulated in AAA lesions in both humans and mice. MT1 also facilitated the formation of NETs and subsequently induced phenotypic transformation and apoptosis in vascular smooth muscle cells. Additional in vivo studies revealed that the glycoRNA-rich membranes coated siMT1-loaded poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanoparticles (GlycoRNA-NP-siMT1) effectively delivered siMT1 to AAA lesions, thereby inhibiting abdominal aortic dilation. Mechanistically, GlycoRNA-NP-siMT1 mitigated pathological remodeling of the abdominal aorta by reducing neutrophil infiltration and inhibiting the formation of NETs. Our study indicates that MT1 facilitates the progression of AAA by modulating the formation of NETs. Furthermore, GlycoRNA-NP-siMT1 show an inhibitory effect on AAA progression through a dual mechanism: they competitively inhibit neutrophil infiltration and release siMT1, which subsequently suppresses NET formation.
Keywords: Abdominal aortic aneurysm; GlycoRNA; Metallothionein 1; Nanoparticles; Neutrophil extracellular traps.
© 2025 The Authors. Published by Elsevier Ltd.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures











References
-
- Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat. Rev. Cardiol. 2019;16(4):225–242. - PubMed
-
- Isselbacher E.M., Preventza O., Hamilton Black J., 3rd, Augoustides J.G., Beck A.W., Bolen M.A., Braverman A.C., Bray B.E., Brown-Zimmerman M.M., Chen E.P., Collins T.J., DeAnda A., Jr., Fanola C.L., Girardi L.N., Hicks C.W., Hui D.S., Schuyler Jones W., Kalahasti V., Kim K.M., Milewicz D.M., Oderich G.S., Ogbechie L., Promes S.B., Gyang Ross E., Schermerhorn M.L., Singleton Times S., Tseng E.E., Wang G.J., Woo Y.J., Peer Review Committee M. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the American heart association/American college of cardiology joint committee on clinical practice guidelines. Circulation. 2022;146(24):e334–e482. - PMC - PubMed
-
- Sakalihasan N., Michel J.B., Katsargyris A., Kuivaniemi H., Defraigne J.O., Nchimi A., Powell J.T., Yoshimura K., Hultgren R. Abdominal aortic aneurysms. Nat. Rev. Dis. Primers. 2018;4(1):34. - PubMed
-
- Raffort J., Lareyre F., Clement M., Hassen-Khodja R., Chinetti G., Mallat Z. Monocytes and macrophages in abdominal aortic aneurysm. Nat. Rev. Cardiol. 2017;14(8):457–471. - PubMed
-
- Tian Z., Zhang Y., Zheng Z., Zhang M., Zhang T., Jin J., Zhang X., Yao G., Kong D., Zhang C., Wang Z., Zhang Q. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe. 2022;30(10) 1450-1463 e8. - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous