Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Sep 1:292:127991.
doi: 10.1016/j.talanta.2025.127991. Epub 2025 Mar 19.

Volatile organic compounds (VOCs) detection for the identification of bacterial infections in clinical wound samples

Affiliations
Free article
Review

Volatile organic compounds (VOCs) detection for the identification of bacterial infections in clinical wound samples

Mostafa Azimzadeh et al. Talanta. .
Free article

Abstract

Early detection of wound infections is critical for timely intervention and prevention of possible complications since prompt treatment can help lower pathogen spread and enhance faster healing. Early detection also helps reduce the risk of serious infections requiring extensive medical interventions or life-threatening diseases such as sepsis. Culture-based approaches currently used for bacterial identification have limited sensitivity and specificity. At the same time, they are time-consuming, resulting in delays in therapy and, therefore, having a negative impact on the treatment outcomes. Quantifying the volatile organic compounds (VOCs) released by bacteria residing in wounds is a promising, non-invasive option for detecting infections at early stages. This method allows for continuous monitoring without requiring invasive procedures, thereby reducing patient discomfort and the risk of further complications. Spectroscopy methods and sensors are the primary VOC detection and quantification approaches, but sensors are more rapid, cost-effective, non-invasive, and precise. This review highlights the significance of the early detection of wound infection to enable timely intervention and prevent complications, emphasizing the limitations of culture-based approaches. It also explores the potential of quantifying VOCs using different methods and discusses the correlation between their levels and the rate of bacterial infections in wounds. Additionally, the review evaluates current VOC-based monitoring methods for wound management, identifies gaps in the field, and advocates for further research to advance wound care and enhance patient outcomes.

Keywords: Bacterial infections; Chronic wounds; Sensor; VOC; Volatile organic compounds; Wound monitoring.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms

Substances

LinkOut - more resources