Sleep stages antagonistically modulate reactivation drift
- PMID: 40132588
- DOI: 10.1016/j.neuron.2025.02.025
Sleep stages antagonistically modulate reactivation drift
Abstract
Hippocampal reactivation of waking neuronal assemblies in sleep is a key initial step of systems consolidation. Nevertheless, it is unclear whether reactivated assemblies are static or whether they reorganize gradually over prolonged sleep. We tracked reactivated CA1 assembly patterns over ∼20 h of sleep/rest periods and related them to assemblies seen before or after in a spatial learning paradigm using rats. We found that reactivated assembly patterns were gradually transformed and started to resemble those seen in the subsequent recall session. Periods of rapid eye movement (REM) sleep and non-REM (NREM) had antagonistic roles: whereas NREM accelerated the assembly drift, REM countered it. Moreover, only a subset of rate-changing pyramidal cells contributed to the drift, whereas stable-firing-rate cells maintained unaltered reactivation patterns. Our data suggest that prolonged sleep promotes the spontaneous reorganization of spatial assemblies, which can contribute to daily cognitive map changes or encoding new learning situations.
Keywords: Bayesian decoding; REM; hidden Markov model; hippocampus; learning; place cells; reactivations; replay; sharp-wave ripples; sleep.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous
