Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 25;136(9):968-981.
doi: 10.1161/CIRCRESAHA.124.325841. Epub 2025 Mar 26.

MAIT Cells Promote Cholesterol Excretion Pathways Mitigating Atherosclerosis

Affiliations

MAIT Cells Promote Cholesterol Excretion Pathways Mitigating Atherosclerosis

Hua Wang et al. Circ Res. .

Abstract

Background: Previous clinical studies have indicated reduced circulating mucosal-associated invariant T (MAIT) cells in individuals with coronary artery disease. However, the precise role and underlying mechanisms of MAIT cells in this context remain unclear. Immune homeostasis plays a pivotal role in the development of atherosclerosis. This study explores the impact of MAIT cells on atherosclerosis.

Methods: Vα19+/- Ldlr-/- mice, characterized by a high MAIT cell frequency, and MAIT cell deficient MR1-/- (major histocompatibility complex-related molecule 1) Ldlr-/- mice and their respective controls were used. Starting at 6 weeks of age, mice were subjected to a 1% cholesterol diet for 16 weeks. Additionally, the study analyzed circulating MAIT cell frequency and cholesterol levels in 68 patients with hypercholesterolemia.

Results: In Vα19+/- Ldlr-/- mice, increased MAIT cells demonstrated a protective effect against atherosclerosis by reducing VLDL-C (very-low-density lipoprotein cholesterol) levels through heightened cholesterol excretion. This effect was accompanied by elevated jejunal ABCB1a, ABCG5, and ABCG8 expression, mediated by augmented levels of Liver X receptor transcription and activation, likely through intestinal IL-22 (interleukin-22) signaling. Conversely, cholesterol reduction mediated by intestinal cholesterol excretion was blocked by inhibition of MAIT cells. Moreover, MAIT cell-deficient MR1-/- Ldlr-/- mice exhibited elevated total cholesterol levels and increased atherosclerotic lesions. In patients with hypercholesterolemia, circulating MAIT cell frequency displayed negative correlations with VLDL-C levels and positive correlations with HDL-C (high-density lipoprotein cholesterol) levels.

Conclusions: Our findings demonstrate a new mechanism for plasma VLDL-C clearance by MAIT cell-mediated cholesterol excretion. The results provide further evidence that immunity is involved in cholesterol homeostasis. Targeting intestinal immunity to regulate cholesterol homeostasis holds promise as a new cholesterol-lowering modality to prevent atherosclerotic cardiovascular disease.

Keywords: atherosclerosis; cholesterol, dietary; coronary artery disease; hypercholesterolemia; mucosal-associated invariant T cells.

PubMed Disclaimer

Conflict of interest statement

None.

Comment in

MeSH terms

LinkOut - more resources