Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jul;249(1 Pt 2):F124-31.
doi: 10.1152/ajprenal.1985.249.1.F124.

Evidence for transcellular osmotic water flow in rat proximal tubules

Evidence for transcellular osmotic water flow in rat proximal tubules

P A Preisig et al. Am J Physiol. 1985 Jul.

Abstract

To determine the predominant pathway for transepithelial osmotic water flow, the transepithelial osmotic water permeability [Pf(TE)] and the apparent dimensions of paracellular pores and slits were determined in rat proximal convoluted tubules microperfused in vivo. To measure Pf(TE), tubules were perfused with a hyposmotic, cyanide-containing solution. Pf(TE), calculated from the observed volume flux in response to the measured log mean osmotic gradient, was 0.12-0.15 cm/s, assuming sigmaNaCl equal to 1.0-0.7, respectively. The dimensions of the paracellular pathways were determined using measured sucrose and mannitol permeabilities (nonelectrolytes confined to the extracellular space). These were 0.43 and 0.87 X 10(-5) cm/s, respectively. By using the ratio of these permeabilities, their respective free solution diffusion coefficients and molecular radii, and the Renkin equation, the radius of the nonelectrolyte-permeable pores and the total pore area/cm2 surface area/channel length were calculated to be 1.4 nm and 3.56 cm-1, respectively. Similar calculations for slits yielded a slit half-width of 0.8 nm and a total slit area/cm2 surface area/channel length of 3.16 cm-1. The osmotic water permeability of these nonelectrolyte-permeable pathways was calculated by Poiseuille's law to be 0.0018 cm/s (pores) or 0.0014 cm/s (slits), at most 2% of Pf(TE). We conclude that the nonelectrolyte-permeable pathway in the tight junctions is not the major route of transepithelial osmotic water flow in the rat proximal tubule.

PubMed Disclaimer

Publication types

LinkOut - more resources