Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 3;44(6):737-748.
doi: 10.1021/acs.organomet.4c00504. eCollection 2025 Mar 24.

Exploring the Nuclearity and Structural Motifs of Phenoxyimine Alkaline Earth Complexes

Affiliations

Exploring the Nuclearity and Structural Motifs of Phenoxyimine Alkaline Earth Complexes

Amy V Rizzo et al. Organometallics. .

Abstract

The nuclearity and structural motifs of alkaline earth complexes supported by bidentate phenoxyimine ligands has been explored by modulation of the stereoelectronic profile of the ligand, the atomic number of the metal, and the synthetic protocol. Changing the size of the N-imine substituents was found to have no effect on protonolysis reactions between [MgN″2]2 or CaN″2(thf)2 (N″ = N(SiMe3)2) and H t Bu2,ArL (1-OH-2-CH = NAr-4,6- t Bu-C6H2; Ar = 2,6-iPr-C6H3 = Dipp or 2,6-CHPh2-4-Me-C6H2 = Ar*) regardless of reaction stoichiometry, with homoleptic bis(ligand) complexes ( t Bu2,DippL)2Mg (1), ( t Bu2,Ar*L)2Mg (2), ( t Bu2,DippL)2Ca(thf) (3) and ( t Bu2,Ar*L)2Ca(thf) (4) isolated. The importance of reaction protocol was demonstrated by the facile isolation of heteroleptic complex ( t Bu2,Ar*L)MgI(OEt2) (5) from the reaction of equimolar amounts of H t Bu2,Ar*L and MeMgI. Importantly, no subsequent ligand redistribution was observed when complex 5 readily reacted with KN" or KODipp to form ( t Bu2,Ar*L)Mg{N(SiMe3)2}(OEt2) (6) and ( t Bu2,Ar*L)Mg(ODipp)(thf) (7). When small 4,6-phenoxide substituents were considered (HH2,DippL), multimetallic clusters were afforded: (H2,DippL)3Ca2(N″)(thf) (8) and (H2,DippL)6Sr3 (9).

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Chart 1
Chart 1. Strategies for Isolating M2+ Heteroleptic Schiff-Base Complexes Exemplified by (a) Mecking and Co-Workers, (b) Ma and Co-Workers, and (c) Darensbourg and Co-Workers; (d) Phenoxyimine NOON and (e) NON Alkaline Earth Complexes Reported by Jones et al., and (f) This Work.
Scheme 1
Scheme 1. Protonolysis Reactions between HtBu2,ArL and MN″2(thf)2 (M = Mg and Ca) Affording (tBu2,DippL)2Mg (1), (tBu2,Ar*L)2Mg (2), (tBu2,DippL)2Ca(thf) (3) and (tBu2,Ar*L)2Ca(thf) (4)
Relative ligand orientations depicted consistent with solid-state structural data.
Figure 1
Figure 1
Thermal displacement ellipsoid drawings (30% probability) of (tBu2,DippL)2Mg (1), (tBu2,Ar*L)2Mg (2), (tBu2,DippL)2Ca(thf) (3) and (tBu2,Ar*L)2Ca(thf) (4). All hydrogen atoms and solvent of recrystallization are omitted for clarity.
Scheme 2
Scheme 2. Protonolysis Reactions between HtBu2,Ar*L and MeMgI Affording (tBu2,Ar*L)MgI(OEt2) (5), and Subsequent Salt Metathesis Reactions with KX to Form (tBu2,Ar*L)MgN″(OEt2) (6) and (tBu2,Ar*L)Mg(ODipp)(thf) (7)
Figure 2
Figure 2
Thermal displacement ellipsoid drawings (30% probability) of (tBu2,Ar*L)Mg(N″)(thf), (tBu2,Ar*L)Mg(ODipp)(thf) (7). All hydrogen atoms have been omitted for clarity.
Figure 3
Figure 3
Thermal displacement ellipsoid drawings (30% probability) of (H2,DippL)3Ca2N″(thf) (8) and (H2,DippL)6Sr3 (9). All hydrogen atoms have been omitted and each ligand in complex 10 has been color-coded for additional clarity.
Scheme 3
Scheme 3. Protonolysis Reactions between HDippL and MN″2(thf)2 (M = Ca and Sr) to Afford Clusters (a) (H2,DippL)3Ca2(N″)(thf) (8) and (b) Sr3(H2,DippL)6 (9)

References

    1. Hans Wedepohl K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59 (7), 1217–1232. 10.1016/0016-7037(95)00038-2. - DOI
    2. Hill M. S.; Liptrot D. J.; Weetman C. Alkaline earths as main group reagents in molecular catalysis. Chem. Soc. Rev. 2016, 45 (4), 972–988. 10.1039/C5CS00880H. - DOI - PubMed
    3. Harder S.; Langer J. Opportunities with calcium Grignard reagents and other heavy alkaline-earth organometallics. Nat. Rev. Chem. 2023, 7 (12), 843–853. 10.1038/s41570-023-00548-0. - DOI - PubMed
    4. Bhoelan B. S.; Stevering C. H.; van der Boog A. T.; van der Heyden M. A. Barium toxicity and the role of the potassium inward rectifier current. Clin. Toxicol. 2014, 52 (6), 584–593. 10.3109/15563650.2014.923903. - DOI - PubMed
    1. Schlenk W.; jun W. S. Über die Konstitution der Grignardschen Magnesiumverbindungen. Ber. Dtsch. Chem. Ges. A, B 1929, 62 (4), 920–924. 10.1002/cber.19290620422. - DOI
    1. Knüpfer C.; Langer J.; Harder S. bis-Silyl-triazenide ligands in alkaline-earth metal chemistry. Z. Anorg. Allg. Chem. 2024, 650 (3), e20230022610.1002/zaac.202300226. - DOI
    2. Stevens M. P.; Spray E.; Vitorica-Yrezabal I. J.; Singh K.; Timmermann V. M.; Sotorrios L.; Macgregor S. A.; Ortu F. Synthesis, characterisation and reactivity of group 2 complexes with a thiopyridyl scorpionate ligand. Dalton Trans. 2022, 51 (31), 11922–11936. 10.1039/D2DT02012B. - DOI - PubMed
    3. Barros M. L.; Cushion M. G.; Schwarz A. D.; Turner Z. R.; Mountford P. Magnesium, calcium and zinc [N2N′] heteroscorpionate complexes. Dalton Trans. 2019, 48 (13), 4124–4138. 10.1039/C8DT04985H. - DOI - PubMed
    4. Chapple P. M.; Kahlal S.; Cartron J.; Roisnel T.; Dorcet V.; Cordier M.; Saillard J.-Y.; Carpentier J.-F.; Sarazin Y. Bis(imino)carbazolate: A Master Key for Barium Chemistry. Angew. Chem., Int. Ed. 2020, 59 (23), 9120–9126. 10.1002/anie.202001439. - DOI - PubMed
    5. Gentner T. X.; Rösch B.; Ballmann G.; Langer J.; Elsen H.; Harder S. Low Valent Magnesium Chemistry with a Super Bulky β-Diketiminate Ligand. Angew. Chem., Int. Ed. 2019, 58 (2), 607–611. 10.1002/anie.201812051. - DOI - PubMed
    6. Liu Y.; Zhu K.; Chen L.; Liu S.; Ren W. Azobenzenyl Calcium Complex: Synthesis and Reactivity Studies of a Ca(I) Synthon. Inorg. Chem. 2022, 61 (50), 20373–20384. 10.1021/acs.inorgchem.2c03008. - DOI - PubMed
    7. Yang W.; White A. J. P.; Crimmin M. R. Deoxygenative Coupling of CO with a Tetrametallic Magnesium Hydride Complex. Angew. Chem., Int. Ed. 2024, 63 (14), e20231962610.1002/anie.202319626. - DOI - PMC - PubMed
    8. Piesik D. F. J.; Range S.; Harder S. Bimetallic Calcium and Zinc Complexes with Bridged β-Diketiminate Ligands: Investigations on Epoxide/CO2 Copolymerization. Organometallics 2008, 27 (23), 6178–6187. 10.1021/om800597f. - DOI
    1. Gärtner M.; Görls H.; Westerhausen M. Synthesis and structural variations of substituted phenylamide complexes of the heavy alkaline earth metals calcium, strontium and barium. Dalton Trans. 2008, (12), 1574–1582. 10.1039/b717267b. - DOI - PubMed
    2. Boyle T. J.; Sears J. M.; Greathouse J. A.; Perales D.; Cramer R.; Staples O.; Rheingold A. L.; Coker E. N.; Roper T. M.; Kemp R. A. Synthesis and Characterization of Structurally Diverse Alkaline-Earth Salen Compounds for Subterranean Fluid Flow Tracking. Inorg. Chem. 2018, 57 (5), 2402–2415. 10.1021/acs.inorgchem.7b01350. - DOI - PubMed
    1. Santoro O.; Zhang X.; Redshaw C. Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts 2020, 10 (7), 80010.3390/catal10070800. - DOI
    2. Juyal V. K.; Pathak A.; Panwar M.; Thakuri S. C.; Prakash O.; Agrwal A.; Nand V. Schiff base metal complexes as a versatile catalyst: A review. J. Organomet. Chem. 2023, 999, 12282510.1016/j.jorganchem.2023.122825. - DOI
    3. Al Zoubi W.; Ko Y. G. Organometallic complexes of Schiff bases: Recent progress in oxidation catalysis. J. Organomet. Chem. 2016, 822, 173–188. 10.1016/j.jorganchem.2016.08.023. - DOI

LinkOut - more resources