Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 8:154:114518.
doi: 10.1016/j.intimp.2025.114518. Epub 2025 Mar 28.

Lycium barbarum glycopeptide attenuates intracerebral hemorrhage-induced inflammation and oxidative stress via activation of the Sirt3 signaling pathway

Affiliations

Lycium barbarum glycopeptide attenuates intracerebral hemorrhage-induced inflammation and oxidative stress via activation of the Sirt3 signaling pathway

Chang-Sheng Ma et al. Int Immunopharmacol. .

Abstract

Background: Intracerebral hemorrhage (ICH) is a severe neurological condition characterized by high morbidity and mortality rates, with no effective treatment currently available. Lycium barbarum glycopeptide (LbGP), derived from the further purification of Lycium barbarum polysaccharides (LBP), has demonstrated anti-inflammatory effects, suggesting its potential as a therapeutic agent for ICH. However, the role and mechanisms of LbGP in ICH remain unclear. This study aimed to investigate the effects of LbGP on ICH and its underlying mechanisms.

Methods: A collagenase injection-induced mouse model of ICH was used to evaluate the therapeutic effects of LbGP. Mice were treated with varying doses of LbGP, and outcomes were assessed based on hemorrhage volume, neurological function, inflammation, and oxidative stress markers. Apoptosis was analyzed using TUNEL staining. Mechanistic studies focused on mitochondrial acetylation homeostasis and the expression of Sirt3, a mitochondrial deacetylase. Statistical analyses were performed using one-way ANOVA with Tukey's post hoc tests.

Results: LbGP administration reduced hemorrhage volume and improved neurological function in a dose-dependent manner. It significantly decreased pro-inflammatory cytokines (IL-18, TNF-α, IL-1β) and oxidative stress markers (malondialdehyde and reactive oxygen species) while increasing superoxide dismutase activity and total antioxidant capacity. LbGP treatment also mitigated apoptosis and promoted mitochondrial acetylation homeostasis. Mechanistically, LbGP upregulated mitochondrial Sirt3 expression, and blocking Sirt3 disrupted mitochondrial acetylation homeostasis, resulting in increased inflammation and oxidative stress.

Conclusions: LbGP alleviates inflammation and oxidative stress in hemorrhagic brain injury by activating Sirt3 and maintaining mitochondrial acetylation homeostasis. These findings highlight the therapeutic potential of LbGP in treating ICH, providing a foundation for further clinical applications.

Keywords: Inflammation; Intracerebral hemorrhage (ICH); Lycium barbarum glycopeptide (LbGP); Oxidative stress; Sirt3.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources