This is a preprint.
CytoPheno: Automated descriptive cell type naming in flow and mass cytometry
- PMID: 40161808
- PMCID: PMC11952469
- DOI: 10.1101/2025.03.11.639902
CytoPheno: Automated descriptive cell type naming in flow and mass cytometry
Update in
-
Automated descriptive cell type naming in flow and mass cytometry with CytoPheno.Sci Rep. 2025 Jul 23;15(1):26750. doi: 10.1038/s41598-025-12153-w. Sci Rep. 2025. PMID: 40702123 Free PMC article.
Abstract
Advances in cytometry have led to increases in the number of cellular markers that are routinely measured. The resulting complexity of the data has prompted a shift from manual to automated analysis methods. Currently, numerous unsupervised methods are available to cluster cells based on marker expression values. However, phenotyping the resulting clusters is typically not part of the automated process. Manually identifying both marker definitions (e.g. CD4+, CCR7+, CD45RA+, CD19-) and descriptive cell type names (e.g. naïve CD4+ T cells) based on marker expression values can be time-consuming, subjective, and error-prone. In this work we propose an algorithm that addresses these problems through the creation of an automated tool, CytoPheno, that assigns marker definitions and cell type names to unidentified clusters. First, post-clustered expression data undergoes per-marker calculations to assign markers as positive or negative. Next, marker names undergo a standardization process to match to Protein Ontology identifier terms. Finally, marker descriptions are matched to cell type names within the Cell Ontology. Each part of the tool was tested with benchmark data to demonstrate performance. Additionally, the tool is encompassed in a graphical user interface (R Shiny) to increase user accessibility and interpretability. Overall, CytoPheno can aid researchers in timely and unbiased phenotyping of post-clustered cytometry data.
Conflict of interest statement
Competing Interests The authors declare that they have no conflict of interest.
Figures




Similar articles
-
Automated descriptive cell type naming in flow and mass cytometry with CytoPheno.Sci Rep. 2025 Jul 23;15(1):26750. doi: 10.1038/s41598-025-12153-w. Sci Rep. 2025. PMID: 40702123 Free PMC article.
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.Health Technol Assess. 2024 Aug;28(37):1-158. doi: 10.3310/TWCG3912. Health Technol Assess. 2024. PMID: 39186036 Free PMC article.
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.Clin Orthop Relat Res. 2024 Dec 1;482(12):2193-2208. doi: 10.1097/CORR.0000000000003185. Epub 2024 Jul 23. Clin Orthop Relat Res. 2024. PMID: 39051924
References
-
- Price L. S. et al. Gating Harmonization Guidelines for Intracellular Cytokine Staining Validated in Second International Multiconsortia Proficiency Panel Conducted by Cancer Immunotherapy Consortium (CIC/CRI ). Cytometry A 99, 107–116 (2020). - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials