Effects of skull properties on continuous-wave transcranial focused ultrasound transmission
- PMID: 40172281
- DOI: 10.1121/10.0036344
Effects of skull properties on continuous-wave transcranial focused ultrasound transmission
Abstract
Transcranial low-intensity focused ultrasound can deliver energy to the brain in a minimally invasive manner for neuromodulation applications. However, continuous sonication through the skull introduces significant wave interactions, complicating precise energy delivery to the target. This study presents a comprehensive examination of intracranial acoustic fields generated by focused ultrasound transducers and assesses the characteristics of cranial bone that affect acoustic transmission. Acoustic field maps were generated at 88 regions of interest across 10 historical and 2 Thiel-embalmed human skull specimens with sonication at frequencies of 220, 650, and 1000 kHz. The average peak pressure insertion losses for historical skulls were 3.6 ± 3.4, 9.3 ± 3.3, and 14.8 ± 5.8 dB, respectively, and for Thiel skulls, the respective losses were 2.9 ± 1.8, 9.4 ± 2.6, and 17.0 ± 5.5 dB. The effects of skull thickness, skull density ratio, and skull curvature on intracranial peak pressure, power, and focal area were investigated and linear fits produced. Several unfavorable focusing performances were observed in regions with excessive thickness variation. The effects of angulation and spacing between the transducer and the skull were also investigated. Preliminary findings indicate that wave superposition resulting from skull and transducer spacing could lead to a 30%-40% uncertainty in peak recorded intracranial pressure.
© 2025 Acoustical Society of America.
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous
