Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 4;11(14):eads1176.
doi: 10.1126/sciadv.ads1176. Epub 2025 Apr 2.

Real-time antiproton annihilation vertexing with submicrometer resolution

Michael Berghold  1 Davide Orsucci  2 Francesco Guatieri  1   3   4 Sara Alfaro  5 Marcis Auzins  6 Benedikt Bergmann  7   8 Petr Burian  7 Roberto Sennen Brusa  3   4 Antoine Camper  9 Ruggero Caravita  3   4 Fabrizio Castelli  10   11 Giovanni Cerchiari  12 Roman Jerzy Ciuryło  13 Ahmad Chehaimi  3   4 Giovanni Consolati  10   14 Michael Doser  15 Kamil Eliaszuk  16 Riley Craig Ferguson  3   4 Matthias Germann  15 Anna Giszczak  16 Lisa Glöggler  15 Łukasz Graczykowski  16 Malgorzata Grosbart  15 Natali Gusakova  15   17 Fredrik Gustafsson  15 Stefan Haider  15 Saiva Huck  15   18 Christoph Hugenschmidt  1 Malgorzata Anna Janik  16 Tymoteusz Henryk Januszek  16 Grzegorz Kasprowicz  19 Kamila Kempny  16 Ghanshyambhai Khatri  20 Łukasz Kłosowski  13 Georgy Kornakov  16 Valts Krumins  6   15 Lidia Lappo  16 Adam Linek  13 Sebastiano Mariazzi  3   4 Pawel Moskal  21   22 Dorota Nowicka  16 Piyush Pandey  21   22 Daniel PĘcak  16   23 Luca Penasa  3   4 Vojtech Petracek  24 Mariusz Piwiński  13 Stanislav Pospisil  7 Luca Povolo  3   4 Francesco Prelz  10 Sadiqali Rangwala  25 Tassilo Rauschendorfer  14   15   26 Bharat Rawat  27   28 Benjamin Rienäcker  27 Volodymyr Rodin  27 Ole Røhne  9 Heidi Sandaker  9 Sushil Sharma  21   22 Petr Smolyanskiy  7 Tomasz Sowiński  23 Dariusz Tefelski  16 Theodoros Vafeiadis  15 Marco Volponi  3   4   14   15 Carsten Peter Welsch  27   28 Michal Zawada  13 Jakub Zielinski  16 Nicola Zurlo  29   30 AEḡIS Collaboration
Affiliations

Real-time antiproton annihilation vertexing with submicrometer resolution

Michael Berghold et al. Sci Adv. .

Abstract

Primary goal of the AEḡIS experiment is to precisely measure the free fall of antihydrogen within Earth's gravitational field. To this end, cold (≈50 K) antihydrogen will traverse a two-grid moiré deflectometer before annihilating onto a position-sensitive detector, which shall determine the vertical position of the annihilation vertex relative to the grids with micrometric accuracy. Here, we introduce a vertexing detector based on a modified mobile camera sensor and experimentally demonstrate that it can measure the position of antiproton annihilations within [Formula: see text] μm, a 35-fold improvement over the previous state of the art for real-time antiproton vertexing. These methods are directly applicable to antihydrogen. Moreover, the sensitivity to light of the sensor enables in situ calibration of the moiré deflectometer, substantially reducing systematic errors. This sensor emerges as a breakthrough technology toward the AEḡIS scientific goals and will constitute the basis for the development of a large-area detector for conducting antihydrogen gravity measurements.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. Curated selection of antiproton annihilation events as imaged by the CMOS sensor.
The observed shapes are similar to those recorded by the Timepix3 detector (25, 26), albeit at a scale approximately 50 times smaller. Pixels marked in magenta have been deemed non-functional by taking background images. Green arrows indicate examples of ellipse-shaped prongs, cyan arrows indicate examples of thick tracks, and orange arrows examples of thin tracks.
Fig. 2.
Fig. 2.. Distribution of the widths of recorded tracks.
In blue the distribution in thickness of the tracks in recorded antiprotons events. We attribute the higher-thickness peak of the distribution to tracks left in the sensor by protons and the lower peak to tracks left by pions. In red the distribution in thickness of tracks left by 4-MeV protons within the detector, matching the topmost part of the distribution in thickness of proton tracks. We attribute the difference between the distributions mainly to the difference in energy spectrum of the protons.
Fig. 3.
Fig. 3.. Reference grid used to determine the sensor resolution.
(A) Optical image of the silicon nitride grid acquired using a point light source before installing the setup in vacuum. (B) A similar image obtained by exploiting the light emitted by a vacuum gauge in the apparatus. Arrows indicate the two grid teeth that were bent by the adhesive deforming under vacuum. (C) The reconstructed position of antiproton annihilations recorded with the grid installed onto the sensor. Toward the left side two distinct areas, nearly devoid of annihilations events can be seen. These are the regions where the thermoplastic adhesive keeping the grid in place was applied. (D) A histogram of the distance of the annihilations events from the nearest edge. Overlayed in orange is the best fitting error function found via maximum likelihood.
Fig. 4.
Fig. 4.. Precision and accuracy of the grid fitting method.
(Left) Relative drift of the endpoints of the 50 grid teeth as determined by the fitting algorithm described in the “Grid fitting algorithms” section over the course of 1 hour. One of the edges has been highlighted in red to better show the typical progression of the algorithm output over time. The fluctuations in the so reconstructed coordinates are below 0.12-μm root mean square (RMS) for all the grid vertices, with median being 0.031-μm RMS. (Right) Relative position of one grid vertex tracked over the course of the 8-day measurement campaign. The linear fit used to compensate for the grid movement in the data analysis is shown in orange.
Fig. 5.
Fig. 5.. Detail of the beamline of AEḡIS, showing the injection line from ELENA and part of the trap complex installed inside the 5-T trap.
Individual antiproton bunches from ELENA pass through a degrader and are caught by the AEḡIS C trap (red arrows). Electrode voltages in the beamline are then reconfigured to allow extraction toward the 45° offshoot, after which the trap is opened and the antiprotons implanted into the sensor (green arrows).

References

    1. Wagner T. A., Schlamminger S., Gundlach J. H., Adelberger E. G., Torsion-balance tests of the weak equivalence principle. Class. Quantum Gravity 29, 184002 (2012).
    1. Touboul P., Métris G., Rodrigues M., Bergé J., Robert A., Baghi Q., André Y., Bedouet J., Boulanger D., Bremer S., Carle P., Chhun R., Christophe B., Cipolla V., Damour T., Danto P., Demange L., Dittus H., Dhuicque O., Fayet P., Foulon B., Guidotti P.-Y., Hagedorn D., Hardy E., Huynh P.-A., Kayser P., Lala S., Lämmerzahl C., Lebat V., Liorzou F., List M., Löffler F., Panet I., Pernot-Borràs M., Perraud L., Pires S., Pouilloux B., Prieur P., Rebray A., Reynaud S., Rievers B., Selig H., Serron L., Sumner T., Tanguy N., Torresi P., Visser P., MICROSCOPE Collaboration , MICROSCOPE mission: Final results of the test of the equivalence principle. Phys. Rev. Lett. 129, 121102 (2022). - PubMed
    1. Witteborn F. C., Fairbank W. M., Experiments to determine the force of gravity on single electrons and positrons. Nature 220, 436–440 (1968).
    1. Holzscheiter M. H., Brown R. E., Camp J. B., Cornford S., Darling T., Dyer P., Goldman T., Høibråten S., Hosea K., Hughes R. J., Jarmie N., Kenefick R. A., King N. S. P., Lizon D. C., Nieto M. M., Midzor M. M., Parry S. P., Rochet J., Ristinen R. A., Schauer M. M., Schecker J. A., Witteborn F. C., Trapping of antiprotons in a large penning trap – Progress towards a measurement of the gravitational acceleration of the antiproton. Nucl. Phys. A 558, 709–718 (1993).
    1. Morrison P., Approximate nature of physical symmetries. Am. J. Phys. 26, 358–368 (1958).