Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul:138:109024.
doi: 10.1016/j.jmgm.2025.109024. Epub 2025 Mar 26.

Tailoring functionalized 2,3-diaza-1,3-butadienes for high-energy and insensitive applications

Affiliations

Tailoring functionalized 2,3-diaza-1,3-butadienes for high-energy and insensitive applications

Hridya Rajan et al. J Mol Graph Model. 2025 Jul.

Abstract

The heat of formation (HOF), detonation performance, electronic properties, thermal stability, impact energy and explosive power of a series of highly functionalized 2,3-diaza-1,3-butadienes were studied using density functional theory. HOF values of all the designed compounds were positive. Among the 100 compounds, more than 50 % exhibited a density equal to or greater than 1.9 g cm-3. There was close agreement in the calculated value of density, detonation performance and impact energy of traditional explosive RDX, HMX and CL-20 with the experimental value. The predicted values of detonation velocity and pressure indicated that about 45 compounds possessed values higher than that of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), among which 20 compounds had higher impact energy than HMX. Five compounds were identified as potential front-runners with superior detonation performance greater than CL-20, together with impact energy higher than HMX. Thus compounds with improved properties were designed by the adoption of strategies that involved the incorporation of diverse explosophores and nitrogen atoms in the ring and the framework. Our study proves that this work holds immense potential in the development of high-energetic density materials with promising properties.

Keywords: DFT; Detonation performance; Heterocyclic compounds; High energy density materials; Impact sensitivity; Oxygen balance.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources