Identification and validation of hypoxia-responsive signature pathways in human cardiomyocytes
- PMID: 40177008
- PMCID: PMC11958886
- DOI: 10.1007/s13205-025-04271-z
Identification and validation of hypoxia-responsive signature pathways in human cardiomyocytes
Abstract
The present study was designed to investigate the effect of hypoxia (1% O2) for 24 h in human AC16 cells by analyzing alterations in the expression of cardiac markers and signature pathways using immunocytochemistry and next-generation sequencing respectively. The Gene set enrichment analysis and Cytoscape software were used for data analysis and visualization respectively. Sequencing data validation and functional characterization were done using flow cytometry, qRT-PCR, an antibody array, and immunoblotting. The result revealed that the expression levels of troponins decreased; however, the expression levels of VEGF-A and HIF-alpha increased under hypoxia compared with unexposed control. A total of 2120 genes corresponding to 457 gene sets were significantly altered, 153 of which were significantly upregulated and 304 of which were downregulated in hypoxic cardiomyocytes. The significantly altered gene sets corresponded to key cellular and molecular pathways, such as cardiac hypertrophy, transcription factors, microRNAs, mitochondrial abnormalities, RNA processing, cell cycle, and biological oxidation pathways. Thus, this analysis revealed multiple pathways associated with hypoxia which provides valuable insights into the molecular mechanisms underlying human cardiomyocytes, identifying potential targets for addressing cardiac illnesses induced by hypoxia.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-025-04271-z.
Keywords: Cardiac markers; Cardiomyocytes; Cytoscape; GSEA; Hypoxia; Next-generation sequencing.
© King Abdulaziz City for Science and Technology 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Conflict of interestAuthor(s) declares no conflict of interest.
Similar articles
-
Immunogenicity and seroefficacy of pneumococcal conjugate vaccines: a systematic review and network meta-analysis.Health Technol Assess. 2024 Jul;28(34):1-109. doi: 10.3310/YWHA3079. Health Technol Assess. 2024. PMID: 39046101 Free PMC article.
-
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.Health Technol Assess. 2008 Jun;12(28):iii-iv, ix-95. doi: 10.3310/hta12280. Health Technol Assess. 2008. PMID: 18547499
-
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.Reprod Sci. 2025 Jun;32(6):1886-1904. doi: 10.1007/s43032-025-01847-1. Epub 2025 May 15. Reprod Sci. 2025. PMID: 40374866
-
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.BMC Cancer. 2025 Jul 1;25(1):1055. doi: 10.1186/s12885-025-14216-7. BMC Cancer. 2025. PMID: 40597017 Free PMC article.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
References
-
- Blue GM, Kirk EP, Giannoulatou E, Dunwoodie SL, Ho JWK, Hilton DCK, White SM, Sholler GF, Harvey RP, Winlaw DS (2014) Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J Am Coll Cardiol 64(23):2498–2506. 10.1016/j.jacc.2014.09.048 - PubMed
-
- Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, Hirano M, Isaac ND (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39(1):133–147. 10.1016/j.yjmcc.2005.03.003 - PubMed
-
- Feyen E, Ricke-Hoch M, Van Fraeyenhove J, Vermeulen Z, Scherr M, Dugaucquier L, Viereck J, Bruyns T, Thum T, Segers VFM, Hilfiker-Kleiner D, De Keulenaer GW (2021) ERBB4 and multiple microRNAs that target ERBB4 participate in pregnancy-related cardiomyopathy. Circ Heart Fail 14(7):e006898. 10.1161/CIRCHEARTFAILURE.120.006898 - PubMed
-
- Georget M, Pisan E (2023) Next generation sequencing (NGS) for beginners. Rev Mal Respir 40(4):345–358. 10.1016/j.rmr.2023.01.026 - PubMed
LinkOut - more resources
Full Text Sources