Impaired ApoB secretion triggers enhanced secretion of ApoE to maintain triglyceride homeostasis in hepatoma cells
- PMID: 40180213
- PMCID: PMC12147227
- DOI: 10.1016/j.jlr.2025.100795
Impaired ApoB secretion triggers enhanced secretion of ApoE to maintain triglyceride homeostasis in hepatoma cells
Abstract
Apolipoprotein B (ApoB) is essential for the assembly and secretion of triglyceride (TG)-rich VLDL particles, and its dysfunction is linked to metabolic disorders, including dyslipidemia and liver steatosis. However, less attention has been paid to whether and how other apolipoproteins play redundant or compensatory roles when the ApoB function is compromised. Here, we investigated the effects of microsomal triglyceride transfer protein (MTP), which mediates lipidation of nascent ApoB, on ApoE function. We observed a paradoxical increase in ApoE secretion resulting from increased expression in MTP inhibitor (MTPi)-treated human hepatoma cells. This phenotype was recapitulated in APOB-knockout cells and was associated with impaired ApoB secretion. While MTP-dependent transfer of neutral lipids is dispensable for ApoE secretion, TG biosynthesis, redundantly catalyzed by DGAT1 and DGAT2, is required for efficient ApoE secretion in hepatoma cells. ApoE colocalizes with lipid droplets near the Golgi apparatus and mediates TG export in an ApoB-independent fashion. We found that simultaneous inhibition of both ApoE and ApoB, but not inhibition of either alone, led to TG accumulation in hepatoma cells, indicating that both proteins function redundantly to control TG content. Validation studies in primary human hepatocytes (PHHs) demonstrated DGAT2-dependent secretion of ApoE. While MTPi treatment did not elevate ApoE secretion, it induced increased sialylation of ApoE in the supernatants of PHHs. These results show that enhanced ApoE secretion compensates for the impaired ApoB function to maintain the lipid homeostasis, providing an alternative route to modulate lipid turnover in hepatoma cells.
Keywords: ApoB; ApoE; VLDL; apolipoproteins; hepatocyte; lipid transfer proteins; liver; sialylation; triglycerides.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.
Figures






References
-
- Chen Z., Fitzgerald R.L., Averna M.R., Schonfeld G. A targeted apolipoprotein B-38.9-producing mutation causes fatty livers in mice due to the reduced ability of apolipoprotein B-38.9 to transport triglycerides. J. Biol. Chem. 2000;275:32807–32815. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous