Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun:267:113155.
doi: 10.1016/j.jphotobiol.2025.113155. Epub 2025 Mar 30.

Exploring the phototherapy modalities and dosages for an ingestible light-emitting diode capsule to eliminate Helicobacter pylori infection

Affiliations

Exploring the phototherapy modalities and dosages for an ingestible light-emitting diode capsule to eliminate Helicobacter pylori infection

Jiashen Hu et al. J Photochem Photobiol B. 2025 Jun.

Abstract

Helicobacter pylori (H. pylori) infection presents increasing challenges to antibiotic therapies owing to limited drug bioavailability, multi-drug resistance and collateral damage to commensal intestinal microflora. To address these problems, here, an ingestible magnetically controlled light-emitting diode (LED) light source was designed for an ingestible capsule to perform antimicrobial photodynamic therapy (aPDT) without an exogenous photosensitizer (ex-PS) at 630 nm. Specifically, we first optimized the antibacterial rates of aPDT with ex-PS and aPDT without ex-PS against H. pylori at the bacterial suspension level by varying the wavelength (405, 530, 630 nm), photosensitizer concentration (2, 4, 6, 8, 10 μg/mL), power density (15, 30 mW/cm2), and energy density (0, 3.6, 7.2, 10.8, 14.4, 18.0 J/cm2). Then, we compared the antibacterial effect of aPDT with ex-PS and aPDT without ex-PS against H. pylori at the biofilm level, revealing that the antibacterial rate of aPDT without ex-PS reached approximately 97 % at 405 nm and 18 J/cm2, similar to that of aPDT with ex-PS under the same conditions. Furthermore, 80 SD rats infected with H. pylori were treated with aPDT with ex-PS and aPDT without ex-PS at the above wavelengths. Histopathological analysis of rat gastrointestinal tissues revealed that aPDT with ex-PS and aPDT without ex-PS exhibited significant antibacterial activity against H. pylori, without side effects on normal tissues. Additionally, aPDT without ex-PS at 630 nm induced an anti-inflammatory response and regulated the intestinal flora. Ultimately, we developed a magnetically controlled LED capsule for in vivo aPDT without ex-PS at 630 nm against H. pylori.

Keywords: Antimicrobial photodynamic therapy; Exogenous photosensitizers; Helicobacter pylori; Ingestible LED capsule; Intestinal flora.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest All authors declared that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Similar articles

Cited by

MeSH terms

LinkOut - more resources