Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Aug 15;260(17):9648-53.

Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich cells involves reduction of eukaryotic initiation factor 4F activity

  • PMID: 4019490
Free article

Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich cells involves reduction of eukaryotic initiation factor 4F activity

R Panniers et al. J Biol Chem. .
Free article

Abstract

Almost all living organisms studied respond to elevated temperature with a marked inhibition of overall protein synthesis but increased synthesis of a specific set of proteins, the so-called heat-shock proteins. We have prepared a cell-free protein synthesizing system (lysate) from heat-shocked Ehrlich ascites tumor cells that reflects the inhibition of protein synthesis in intact cells at elevated temperatures. We have isolated and partially purified a stimulator of the heat-shocked cell lysate from Ehrlich cells. Through four purification steps, the stimulator is chromatographically identical to eukaryotic initiation factor 4F (eIF-4F), an initiation factor which specifically binds mRNA cap structure. Therefore, we have tested the effects of highly purified reticulocyte eIF-4F on the heat-shocked cell lysate. Protein synthesis is strongly stimulated by addition of highly purified eIF-4F. Synthesis in the heat-shocked lysate is more inhibited at high (70 mM) KCl concentrations, than at lower concentrations, and stimulation by eIF-4F is correspondingly greater at higher KCl concentrations, so that the rate of protein synthesis is returned to control (non-heat-shocked lysate) levels at all KCl concentrations. Furthermore, at 70 mM KCl, in heat-shocked lysates, synthesis of the 68-kDa heat-shock protein is much less inhibited than synthesis of the bulk of non-heat-shock proteins, and eIF-4F stimulates synthesis of 68-kDa protein to a much lesser extent than non-heat-shock proteins. Thus, addition of purified eIF-4F reverses the effects of elevated temperatures on Ehrlich cells that are reflected in lysates. Therefore, we propose that the inhibition of translation in heat-shocked Ehrlich cells is the result of inactivation of eIF-4F function.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources