Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 Mar 24:2025.03.24.644891.
doi: 10.1101/2025.03.24.644891.

Prokaryotic mechanosensitive channels mediate copper influx

Prokaryotic mechanosensitive channels mediate copper influx

Yara Ghnamah et al. bioRxiv. .

Update in

Abstract

Copper is an essential micronutrient in all kingdoms of life, requiring a meticulous balance between acquisition and toxic overload. While copper import in eukaryotes has been investigated extensively, few prokaryotic copper importers have been identified, leading to the notion that cytoplasmic copper uptake is unnecessary in prokaryotes. Here we report that mechanosensitive channels are key players in prokaryotic copper import. Deletion of the gene encoding the E. coli small mechanosensitive channel, Ec MscS, leads to significantly reduced copper influx. Conversely, overexpression of Ec MscS leads to increased copper influx, elevated intracellular copper content, and renders cells hypersensitive to copper. Furthermore, specific channel blockers and competing permeating ions inhibit Ec MscS copper conductance, lowering intracellular copper accumulation and alleviating copper hypersensitivity. These findings extend beyond E. coli , as other prokaryotic small mechanosensitive channels of bacterial and archaeal origin also facilitate copper influx. Taken together, these results uncover a previously unknown moonlighting function for mechanosensitive channels as a pathway for prokaryotic copper uptake.

PubMed Disclaimer

Publication types

LinkOut - more resources