Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 23;20(1).
doi: 10.4081/gh.2025.1277. Epub 2025 Apr 7.

Moran's I and Geary's C: investigation of the effects of spatial weight matrices for assessing the distribution of infectious diseases

Affiliations
Free article

Moran's I and Geary's C: investigation of the effects of spatial weight matrices for assessing the distribution of infectious diseases

Sarah Isnan et al. Geospat Health. .
Free article

Abstract

The COVID-19 outbreak has precipitated severe occurrences on a global scale. Hence, spatial analysis is crucial in determining the relationships and patterns of geospatial data. Moran's I and Geary's C are prominent methodologies used to measure the spatial autocorrelation of geographical data. Both measure the degree of similarity or dissimilarity between nearby locations based on attribute values in such a way that the selection of distance techniques and weight matrices significantly impact the spatial autocorrelation results. This paper aimed at carrying out the spatial epidemiological characteristics analysis of the pandemic comparing the results of Moran's I and Geary's C with different parameters to gain a comprehensive understanding of the spatial relationship of COVID-19 cases. We employed distance-based techniques, K-nearest neighbour, and Queen contiguity techniques to assess the sensitivity of the different parameter configurations for both Moran's I and Geary's C. The findings revealed that former provided more reliable and robust results compared to the latter, with consistent results of spatial autocorrelation (positive spatial autocorrelation). The distance weight of 0.05 using the Manhattan method of Moran's I is the recommended distance weight, as it outperformed other weight matrices (Moran's I = 0.0152, Z-value= 110.8844 and p-value=0.001).

PubMed Disclaimer

LinkOut - more resources