Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 18;90(15):5120-5124.
doi: 10.1021/acs.joc.4c02996. Epub 2025 Apr 9.

Chemoenzymatic Dynamic Kinetic Resolution of Atropoisomeric 2-(Quinolin-8-yl)benzylalcohols

Affiliations

Chemoenzymatic Dynamic Kinetic Resolution of Atropoisomeric 2-(Quinolin-8-yl)benzylalcohols

Juan M Coto-Cid et al. J Org Chem. .

Abstract

The chemoenzymatic dynamic kinetic resolution of 2-(quinolin-8-yl)benzylalcohols using a combination of lipases and ruthenium catalysts is described. While CalB lipase performs highly selective enzymatic kinetic resolution, the combination with Shvo's or Bäckvall's catalysts promotes atropisomerization of the substrate via the reversible formation of configurationally labile aldehydes, thereby enabling a dynamic kinetic resolution. This synergistic approach was applied to the synthesis of a variety of heterobiaryl acetates in excellent yields and enantioselectivities.

PubMed Disclaimer

Figures

1
1. Dynamization Strategy via Transient Lewis Acid–Lewis Base Interactions
2
2. Chemoenzymatic Dynamic Resolutions with Lipases
3
3. KR of Racemic Heterobiaryl Alcohols (±)-1ai (0.05 mmol) Catalyzed by CalB (15 mg) in CPME (2 mL) in the Presence of Vinyl Acetate (0.15 mmol) as the Acyl Donor
4
4. Chemoenzymatic DKR of Racemic Heterobiaryl Alcohols (±)-1ai (0.1 mmol) using CalB (30 mg) and Shvo’s Catalyst (2 mol %)

Similar articles

References

    1. Feng J., Liu R.-R.. Catalytic Asymmetric Synthesis of N–N Biaryl Atropisomers. Chem.Eur. J. 2024;30:e202303165. doi: 10.1002/chem.202303165. - DOI - PubMed
    2. Roos C. B., Chiang C.-H., Murray L. A. M., Yang D., Schulert L., Narayan A. R. H.. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem. Rev. 2023;123:10641–10727. doi: 10.1021/acs.chemrev.3c00327. - DOI - PubMed
    3. Rodríguez-Salamanca P., Fernández R., Hornillos V., Lassaletta J. M.. Asymmetric Synthesis of Axially Chiral C–N Atropisomers. Chem.Eur. J. 2022;28:e202104442. doi: 10.1002/chem.202104442. - DOI - PMC - PubMed
    4. Tan, B. Axially Chiral Compounds: Asymmetric Synthesis and Applications; Wiley-VCH, 2021.
    5. Carmona J. A., Rodríguez-Franco C., Fernández R., Hornillos V., Lassaletta J. M.. Atroposelective transformation of axially chiral (hetero)­biaryls. From desymmetrization to modern resolution strategies. Chem. Soc. Rev. 2021;50:2968–2983. doi: 10.1039/D0CS00870B. - DOI - PubMed
    6. Da B.-C., Xiang S.-H., Li S., Tan B.. Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds. Chin. J. Chem. 2021;39:1787–1796. doi: 10.1002/cjoc.202000751. - DOI
    7. Cheng J. K., Xiang S. H., Li S., Ye L., Tan B.. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem. Rev. 2021;121:4805–4902. doi: 10.1021/acs.chemrev.0c01306. - DOI - PubMed
    8. Lassaletta, J. M. Atropisomerism and Axial Chirality; World Scientific, 2019.
    1. Overacker R. D., Banerjee S., Neuhaus G. F., Sephton S. M., Herrmann A., Strother J. A., Brack-Werner R., Blakemore P. R., Loesgen S.. Biological evaluation of molecules of the azaBINOL class as antiviral agents: Inhibition of HIV-1 RNase H activity by 7-isopropoxy-8-(naphth-1-yl) quinoline. Bioorg. Med. Chem. 2019;27:3595–3604. doi: 10.1016/j.bmc.2019.06.044. - DOI - PubMed
    2. Rokade B. V., Guiry P. J.. Axially Chiral P,N-Ligands: Some Recent Twists and Turns. ACS Catal. 2018;8:624–643. doi: 10.1021/acscatal.7b03759. - DOI
    3. Wu Z., Wang C., Zakharov L. N., Blakemore P. R.. Enantioselective Synthesis of Biaryl Compounds via Suzuki–Miyaura Cross-Coupling Using a Palladium Complex of 7′-Butoxy-7-(diphenylphosphino)-8,8′-biquinolyl: Investigation of a New Chiral Ligand Architecture. Synthesis. 2014;46:678–685. doi: 10.1055/s-0033-1340519. - DOI
    1. Wang J., Chen M.-W., Ji Y., Hu S.-B., Zhou Y.-G.. Kinetic Resolution of Axially Chiral 5- or 8-Substituted Quinolines via Asymmetric Transfer Hydrogenation. J. Am. Chem. Soc. 2016;138:10413–10416. doi: 10.1021/jacs.6b06009. - DOI - PubMed
    1. Miyaji R., Asano K., Matsubara S.. Induction of Axial Chirality in 8-Arylquinolines through Halogenation Reactions Using Bifunctional Organocatalysts. Chem.Eur. J. 2017;23:9996–10000. doi: 10.1002/chem.201701707. - DOI - PubMed
    1. On I. K. W., Hong W., Zhu Y.. Crossing the ortho-hurdle: Ionic stereocontrol enables atroposelective Suzuki-Miyaura coupling. Chem. Catal. 2023;3:100523. doi: 10.1016/j.checat.2023.100523. - DOI
    2. Shen D., Xu Y., Shi S.-L.. A Bulky Chiral N-Heterocyclic Carbene Palladium Catalyst Enables Highly Enantioselective Suzuki–Miyaura Cross-Coupling Reactions for the Synthesis of Biaryl Atropisomers. J. Am. Chem. Soc. 2019;141:14938–14945. doi: 10.1021/jacs.9b08578. - DOI - PubMed

LinkOut - more resources