Chemoenzymatic Dynamic Kinetic Resolution of Atropoisomeric 2-(Quinolin-8-yl)benzylalcohols
- PMID: 40203203
- PMCID: PMC12160057
- DOI: 10.1021/acs.joc.4c02996
Chemoenzymatic Dynamic Kinetic Resolution of Atropoisomeric 2-(Quinolin-8-yl)benzylalcohols
Abstract
The chemoenzymatic dynamic kinetic resolution of 2-(quinolin-8-yl)benzylalcohols using a combination of lipases and ruthenium catalysts is described. While CalB lipase performs highly selective enzymatic kinetic resolution, the combination with Shvo's or Bäckvall's catalysts promotes atropisomerization of the substrate via the reversible formation of configurationally labile aldehydes, thereby enabling a dynamic kinetic resolution. This synergistic approach was applied to the synthesis of a variety of heterobiaryl acetates in excellent yields and enantioselectivities.
Figures




Similar articles
-
Acylative Dynamic Kinetic Resolution of Secondary Alcohols: Tandem Catalysis by HyperBTM and Bäckvall's Ruthenium Complex.J Org Chem. 2021 May 21;86(10):7189-7202. doi: 10.1021/acs.joc.1c00545. Epub 2021 May 11. J Org Chem. 2021. PMID: 33974415
-
Shvo's catalyst in chemoenzymatic dynamic kinetic resolution of amines - inner or outer sphere mechanism?Org Biomol Chem. 2013 Oct 21;11(39):6695-8. doi: 10.1039/c3ob41318g. Epub 2013 Sep 2. Org Biomol Chem. 2013. PMID: 23995103
-
Chemoenzymatic dynamic kinetic resolution of allylic alcohols: a highly enantioselective route to acyloin acetates.Org Lett. 2007 Aug 16;9(17):3401-4. doi: 10.1021/ol071395v. Epub 2007 Jul 21. Org Lett. 2007. PMID: 17658843
-
Lipases: Valuable catalysts for dynamic kinetic resolutions.Biotechnol Adv. 2015 Sep-Oct;33(5):372-93. doi: 10.1016/j.biotechadv.2015.02.015. Epub 2015 Mar 17. Biotechnol Adv. 2015. PMID: 25795055 Review.
-
Chemoenzymatic synthesis of polymeric materials using lipases as catalysts: a review.Biotechnol Adv. 2014 May-Jun;32(3):642-51. doi: 10.1016/j.biotechadv.2014.04.011. Epub 2014 Apr 25. Biotechnol Adv. 2014. PMID: 24768887 Review.
References
-
- Feng J., Liu R.-R.. Catalytic Asymmetric Synthesis of N–N Biaryl Atropisomers. Chem.Eur. J. 2024;30:e202303165. doi: 10.1002/chem.202303165. - DOI - PubMed
- Roos C. B., Chiang C.-H., Murray L. A. M., Yang D., Schulert L., Narayan A. R. H.. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem. Rev. 2023;123:10641–10727. doi: 10.1021/acs.chemrev.3c00327. - DOI - PubMed
- Rodríguez-Salamanca P., Fernández R., Hornillos V., Lassaletta J. M.. Asymmetric Synthesis of Axially Chiral C–N Atropisomers. Chem.Eur. J. 2022;28:e202104442. doi: 10.1002/chem.202104442. - DOI - PMC - PubMed
- Tan, B. Axially Chiral Compounds: Asymmetric Synthesis and Applications; Wiley-VCH, 2021.
- Carmona J. A., Rodríguez-Franco C., Fernández R., Hornillos V., Lassaletta J. M.. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies. Chem. Soc. Rev. 2021;50:2968–2983. doi: 10.1039/D0CS00870B. - DOI - PubMed
- Da B.-C., Xiang S.-H., Li S., Tan B.. Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds. Chin. J. Chem. 2021;39:1787–1796. doi: 10.1002/cjoc.202000751. - DOI
- Cheng J. K., Xiang S. H., Li S., Ye L., Tan B.. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem. Rev. 2021;121:4805–4902. doi: 10.1021/acs.chemrev.0c01306. - DOI - PubMed
- Lassaletta, J. M. Atropisomerism and Axial Chirality; World Scientific, 2019.
-
- Overacker R. D., Banerjee S., Neuhaus G. F., Sephton S. M., Herrmann A., Strother J. A., Brack-Werner R., Blakemore P. R., Loesgen S.. Biological evaluation of molecules of the azaBINOL class as antiviral agents: Inhibition of HIV-1 RNase H activity by 7-isopropoxy-8-(naphth-1-yl) quinoline. Bioorg. Med. Chem. 2019;27:3595–3604. doi: 10.1016/j.bmc.2019.06.044. - DOI - PubMed
- Rokade B. V., Guiry P. J.. Axially Chiral P,N-Ligands: Some Recent Twists and Turns. ACS Catal. 2018;8:624–643. doi: 10.1021/acscatal.7b03759. - DOI
- Wu Z., Wang C., Zakharov L. N., Blakemore P. R.. Enantioselective Synthesis of Biaryl Compounds via Suzuki–Miyaura Cross-Coupling Using a Palladium Complex of 7′-Butoxy-7-(diphenylphosphino)-8,8′-biquinolyl: Investigation of a New Chiral Ligand Architecture. Synthesis. 2014;46:678–685. doi: 10.1055/s-0033-1340519. - DOI
-
- On I. K. W., Hong W., Zhu Y.. Crossing the ortho-hurdle: Ionic stereocontrol enables atroposelective Suzuki-Miyaura coupling. Chem. Catal. 2023;3:100523. doi: 10.1016/j.checat.2023.100523. - DOI
- Shen D., Xu Y., Shi S.-L.. A Bulky Chiral N-Heterocyclic Carbene Palladium Catalyst Enables Highly Enantioselective Suzuki–Miyaura Cross-Coupling Reactions for the Synthesis of Biaryl Atropisomers. J. Am. Chem. Soc. 2019;141:14938–14945. doi: 10.1021/jacs.9b08578. - DOI - PubMed
LinkOut - more resources
Full Text Sources