Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jul;2(7):1124-32.
doi: 10.1364/josaa.2.001124.

Relationship between spatial-frequency and orientation tuning of striate-cortex cells

Relationship between spatial-frequency and orientation tuning of striate-cortex cells

M A Webster et al. J Opt Soc Am A. 1985 Jul.

Abstract

If striate cells had the receptive-field (RF) shapes classically attributed to them, their preferred spatial frequencies would vary considerably with orientation. Other models of RF shape would predict a greater independence between orientation and spatial-frequency tuning. We have examined this by recording the responses of cat striate-cortex cells to a wide range of different spatial-frequency and orientation combinations. In almost all cells studied, peak orientation did not consistently vary with spatial frequency, but the majority of cells showed some change in peak spatial-frequency tuning with orientation. The amount of change in peak spatial frequency tended to be greater for cells that were narrowly tuned for orientation. However, cells narrowly (and also very broadly) tuned for spatial frequency tended to show considerable independence of spatial-frequency and orientation tuning, and in all but a few cells the degree of change was less than predicted by the classic RF model. Such cells were found to fire only to patterns whose local spatial spectra fell within a compact, restricted, roughly circular two-dimensional spatial-frequency region. We conclude that the two-dimensional RF shape of striate cells more closely approximates that predicted by a two-dimensional Gabor model or by a Gaussian-derivative model than it does the classic shape based on the output of geniculate cells with aligned RF's.

PubMed Disclaimer

Publication types

LinkOut - more resources