Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun 5;183(3):385-96.
doi: 10.1016/0022-2836(85)90009-9.

The crystal structure of d(G-G-G-G-C-C-C-C). A model for poly(dG).poly(dC)

The crystal structure of d(G-G-G-G-C-C-C-C). A model for poly(dG).poly(dC)

M McCall et al. J Mol Biol. .

Abstract

The structure of the DNA oligomer d(G-G-G-G-C-C-C-C) has been determined at a resolution of 2.5 A by single-crystal X-ray methods. There are two strands in the asymmetric unit, and these coil about each other to form a right-handed double-helix of the A-type with Watson-Crick hydrogen bonds between base-pairs. The helix has a shallow minor groove and a deep, water-filled major groove; almost all exposed functional groups on the DNA are hydrated, and 106 ordered solvent molecules have been found. The two d(G-G-G-G).d(C-C-C-C) segments in the octamer exhibit similar and uniform structures, but there is a slight discontinuity at the GpC step between them. A recurring feature of the structure is the overlap of adjacent guanine bases in each GpG step, with the five-membered ring of one guanine stacking on the six-membered ring of its neighbour. There is little or no overlap between adjacent cytosine rings. Conformational parameters for these GpG steps are compared with those from other single-crystal X-ray analyses. In general, GpG steps exhibit high slide, low roll and variable twist. Models for poly(dG).poly(dC) were generated by applying a simple rotation and translation to each of the unmodified d(G-G-G-G).d(C-C-C-C) units. Detailed features of these models are shown to be compatible with various assays of poly(dG).poly(dC) in solution, and are useful in understanding the polymorphic behaviour of this sequence under a variety of experimental conditions.

PubMed Disclaimer

Publication types

LinkOut - more resources