Transcriptional regulator-based biosensors for biomanufacturing in Corynebacterium glutamicum
- PMID: 40209574
- DOI: 10.1016/j.micres.2025.128169
Transcriptional regulator-based biosensors for biomanufacturing in Corynebacterium glutamicum
Abstract
Intracellular biosensors based on transcriptional regulators have become essential instruments in biomanufacturing, extensively employed for the semi-quantitative assessment of intracellular metabolites, high-throughput screening of production strains, and the directed evolution of enzymes. Corynebacterium glutamicum serves as an industrial chassis for the production of amino acids and a variety of high-value-added chemicals. This paper discusses the varieties and modes of action of transcriptional regulators employed in the construction of intracellular biosensors in C. glutamicum. It also reviews the design principles and progress in the application of transcriptional regulator-based biosensors. Furthermore, measures designed to improve the efficacy of these biosensors are delineated. The challenges and future prospects of biosensors based on transcriptional regulators in practical applications are analyzed. This review seeks to offer theoretical direction for the systematic design and development of transcriptional regulator-based biosensors and to aid researchers in enhancing the growth and productivity of microbial production strains.
Keywords: Biomanufacturing; Biosensors; Corynebacterium glutamicum; Transcriptional regulator.
Copyright © 2025. Published by Elsevier GmbH.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
