Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 27;31(30):e202501352.
doi: 10.1002/chem.202501352. Epub 2025 Apr 25.

Allosteric Differentiation of Al(I) Reactivity

Affiliations

Allosteric Differentiation of Al(I) Reactivity

Han-Ying Liu et al. Chemistry. .

Abstract

The dimeric potassium alumanyl, [{SiNDipp}AlK]2 ({SiNDipp} = {CH2SiMe2N(Dipp)}2; Dipp = 2,6-i-Pr2C6H3), reacts with two equivalents of PhC≡CR (R = Ph or SiMe3) with the exclusive formation of the aluminacyclopropene derivatives, [{SiNDipp}Al{η2-C2(R1)(R2)}]. In contrast, reactions with an equal stoichiometry of both alumanyl and alkyne reagents provide the products of not only alkyne cycloaddition but also para-C-H activation of a phenyl substituent. Supported by a theoretical study, this outcome is judged to result from a sequence of cooperative steps and the introduction of a modicum of kinetic discrimination that is suggested to be allosteric in origin.

Keywords: alkyne; aluminum; arene activation; cycloaddition; density functional theory.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
The N,N′‐(diamido)alumanyl anions, IIII, the C,C′‐(dialkyl)alumanyl anion, IV, and the structure of compound V.
Figure 2
Figure 2
(a) The [2 + 1] cycloaddition of diphenylacetylene induced at IVK ; (b) the C–H activation of benzene by dimeric IIIM and the gradation of reactivity resulting from variation of M (M = K, Rb, Cs).
Scheme 1
Scheme 1
Synthesis of compounds 1 and 2 and their subsequent lack of reactivity toward IIIK .
Figure 3
Figure 3
(a) Plot depicting the molecular structure of 1. Ellipsoids are depicted at 30% probability. Hydrogen atoms have been omitted and peripheral substituents are depicted as wireframes, for clarity. Symmetry operations: 1 1 + yx, 2 − x, 13 + z; 2 2 − y, 1 + xy, − 13 + z. (b) Plot depicting the structure of 2. Ellipsoids are depicted at 30% probability. Minor disordered components have been omitted as have hydrogen atoms (those attached to C18 excepted), for clarity. Peripheral substituents are depicted as wireframes, also for visual ease. Symmetry operations: 1 3∕2 − x, − ½ + y, − ½ + z; 2 32x, ½ + y, ½ + z.
Scheme 2
Scheme 2
Synthesis of compounds 3 and 4.
Figure 4
Figure 4
Plot depicting the structure of 3. Ellipsoids depicted at 30% probability. Solvent, minor disordered components and hydrogen atoms (H1, H2, H3, H4, and H111 excepted) omitted for perspicuity. Peripheral substituents are depicted as wireframes, also for clarity. Symmetry operations: 1 1 − x, 1 − y, − z.
Figure 5
Figure 5
Plot depicting the structure of 4. Ellipsoids are depicted at 30% probability. Hydrogen atoms (H1, H2 and those attached to C18 and C35 excepted) have been omitted and peripheral substituents are depicted as wireframes, for clarity. Symmetry operations: 1 1 − x, ½ + y, 1 − z.
Figure 6
Figure 6
Computed free energy profile (BP86‐D3BJ(PCM = C6H6)/BS2//BP86/BS1 level, energies quoted in kcal mol−1) for the formation of the dialuminated alkyne product, F (3 and 4), through initial aluminacyclometalation, followed by para C–H cleavage of Ph. Free energies when R = Ph are in red; free energies when R = SiMe3 are in black.

Similar articles

References

    1. (a) Motlagh H. N., Wrabl J. O., Li J., Hilser V. J., Nature 2014, 508, 331; - PMC - PubMed
    2. (b) Wodak S. J., Paci E., Dokholyan N. V., Berezovsky I. N., Horovitz A., Li J., Hilser V. J., Bahar I., Karanicolas J., Stock G., Hamm P., Stote R. H., Eberhardt J., Chebaro Y., Dejaegere A., Cecchini M., Changeux J. P., Bolhuis P. G., Vreede J., Faccioli P., Orioli S., Ravasio R., Yan L., Brito C., Wyart M., Gkeka P., Rivalta I., Palermo G., McCammon J. A., Panecka‐Hofman J., et al., Structure 2019, 27, 566; - PMC - PubMed
    3. (c) Liu J., Nussinov R., PLoS Comput. Biol. 2016, 12, e1004966; - PMC - PubMed
    4. (d) Fenton A. W., Trends Biochem. Sci. 2008, 33, 420. - PMC - PubMed
    1. (a) Rebek J., Trend J. E., Wattley R. V., Chakravorti S., J. Am. Chem. Soc. 1979, 101, 4333;
    2. (b) Rebek J., Wattley R. V., J. Am. Chem. Soc. 1980, 102, 4853;
    3. (c) Rebek J., Wattley R. V., Costello T., Gadwood R., Marshall L., Angew. Chem., Int. Ed. Engl. 1981, 20, 605;
    4. (d) Onan K., Rebek J., Costello T., Marshall L., J. Am. Chem. Soc. 1983, 105, 6759;
    5. (e) Rebek J., Marshall L., J. Am. Chem. Soc. 1983, 105, 6668;
    6. (f) J. Rebek, Jr. , Costello T., Marshall L., Wattley R., Gadwood R. C., Onan K., J. Am. Chem. Soc. 1985, 107, 7481;
    7. (g) Gavina F., Luis S. V., Costero A. M., Burguete M. I., Rebek J., J. Am. Chem. Soc. 1988, 110, 7140.
    1. Kremer C., Lützen A., Chem.‐Eur. J. 2013, 19, 6162. - PubMed
    1. (a) Gianneschi N. C., Bertin P. A., Nguyen S. T., Mirkin C. A., Zakharov L. N., Rheingold A. L., J. Am. Chem. Soc. 2003, 125, 10508; - PubMed
    2. (b) Gianneschi N. C., Masar M. S., Mirkin C. A., Acc. Chem. Res. 2005, 38, 825; - PubMed
    3. (c) Oliveri C. G., Ulmann P. A., Wiester M. J., Mirkin C. A., Acc. Chem. Res. 2008, 41, 1618; - PMC - PubMed
    4. (d) Yoon H. J., Kuwabara J., Kim J.‐H., Mirkin C. A., Science 2010, 330, 66; - PubMed
    5. (e) Wiester M. J., Ulmann P. A., Mirkin C. A., Angew. Chem., Int. Ed. 2011, 50, 114; - PubMed
    6. (f) McGuirk C. M., Mendez‐Arroyo J., Lifschitz A. M., Mirkin C. A., J. Am. Chem. Soc. 2014, 136, 16594; - PubMed
    7. (g) Lifschitz A. M., Rosen M. S., McGuirk C. M., Mirkin C. A., J. Am. Chem. Soc. 2015, 137, 7252; - PubMed
    8. (h) Lifschitz A. M., Young R. M., Mendez‐Arroyo J., Stern C. L., McGuirk C. M., Wasielewski M. R., Mirkin C. A., Nat. Commun. 2015, 6, 6541; - PMC - PubMed
    9. (i) Kovbasyuk L., Krämer R., Chem. Rev. 2004, 104, 3161. - PubMed
    1. (a) Dydio P., Rubay C., Gadzikwa T., Lutz M., Reek J. N. H., J. Am. Chem. Soc. 2011, 133, 17176; - PubMed
    2. (b) Mon I., Jose D. A., Vidal‐Ferran A., Chem.‐Eur. J. 2013, 19, 2720; - PubMed
    3. (c) McGuirk C. M., Stern C. L., Mirkin C. A., J. Am. Chem. Soc. 2014, 136, 4689; - PubMed
    4. (d) Marcos V., Stephens A. J., Jaramillo‐Garcia J., Nussbaumer A. L., Woltering S. L., Valero A., Lemonnier J. F., Vitorica‐Yrezabal I. J., Leigh D. A., Science 2016, 352, 1555; - PubMed
    5. (e) Kovbasyuk L., Pritzkow H., Krämer R., Fritsky I. O., Chem. Commun. 2004, 880; - PubMed
    6. (f) Smith A. J., Kalkman E. D., Gilbert Z. W., Tonks I. A., Organometallics 2016, 35, 2429;
    7. (g) Komon Z. J. A., Bu X. H., Bazan G. C., J. Am. Chem. Soc. 2000, 122, 12379;
    8. (h) Komon Z. J. A., Bu X. H., Bazan G. C., J. Am. Chem. Soc. 2000, 122, 1830;
    9. (i) Komon Z. J. A., Bazan G. C., Fang C., Bu X. H., Inorg. Chim. Acta 2003, 345, 95.

LinkOut - more resources