Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 11;16(1):3470.
doi: 10.1038/s41467-025-58420-2.

Whole genome sequencing analysis of body mass index identifies novel African ancestry-specific risk allele

Xinruo Zhang #  1 Jennifer A Brody #  2 Mariaelisa Graff #  3 Heather M Highland #  3 Nathalie Chami #  4   5 Hanfei Xu  6 Zhe Wang  4 Kendra R Ferrier  7 Geetha Chittoor  8 Navya Shilpa Josyula  8 Mariah Meyer  7 Shreyash Gupta  8 Xihao Li  9   10   11 Zilin Li  12   13 Matthew A Allison  14 Diane M Becker  15 Lawrence F Bielak  16 Joshua C Bis  2 Meher Preethi Boorgula  17 Donald W Bowden  18 Jai G Broome  19   20 Erin J Buth  19 Christopher S Carlson  21 Kyong-Mi Chang  22   23 Sameer Chavan  17 Yen-Feng Chiu  24 Lee-Ming Chuang  25 Matthew P Conomos  19 Dawn L DeMeo  26 Mengmeng Du  27 Ravindranath Duggirala  28   29 Celeste Eng  30 Alison E Fohner  31 Barry I Freedman  32 Melanie E Garrett  33 Xiuqing Guo  34 Chris Haiman  35 Benjamin D Heavner  19 Bertha Hidalgo  36 James E Hixson  37 Yuk-Lam Ho  38 Brian D Hobbs  26   39 Donglei Hu  30 Qin Hui  40   41 Chii-Min Hwu  42 Rebecca D Jackson  43 Deepti Jain  19 Rita R Kalyani  44 Sharon L R Kardia  16 Tanika N Kelly  45 Ethan M Lange  7 Michael LeNoir  46 Changwei Li  45 Loic Le Marchand  47 Merry-Lynn N McDonald  48 Caitlin P McHugh  19 Alanna C Morrison  49 Take Naseri  50   51 NHLBI Trans-Omics for Precision Medicine (TOPMed) ConsortiumJeffrey O'Connell  52 Christopher J O'Donnell  38   53 Nicholette D Palmer  18 James S Pankow  54 James A Perry  55 Ulrike Peters  21 Michael H Preuss  4 D C Rao  56 Elizabeth A Regan  57 Sefuiva M Reupena  58 Dan M Roden  59 Jose Rodriguez-Santana  60 Colleen M Sitlani  2 Jennifer A Smith  16   61 Hemant K Tiwari  62 Ramachandran S Vasan  63 Zeyuan Wang  40 Daniel E Weeks  64   65 Jennifer Wessel  66   67   68 Kerri L Wiggins  2 Lynne R Wilkens  47 Peter W F Wilson  41   69 Lisa R Yanek  15 Zachary T Yoneda  70 Wei Zhao  16   61 Sebastian Zöllner  71 Donna K Arnett  72 Allison E Ashley-Koch  33 Kathleen C Barnes  17 John Blangero  73 Eric Boerwinkle  49 Esteban G Burchard  74 April P Carson  75 Daniel I Chasman  76   77 Yii-Der Ida Chen  78 Joanne E Curran  73 Myriam Fornage  49   79 Victor R Gordeuk  80 Jiang He  45 Susan R Heckbert  2   81 Lifang Hou  82 Marguerite R Irvin  83 Charles Kooperberg  21 Ryan L Minster  64 Braxton D Mitchell  84 Mehdi Nouraie  85 Bruce M Psaty  2   81   86 Laura M Raffield  87 Alexander P Reiner  81 Stephen S Rich  88 Jerome I Rotter  34 M Benjamin Shoemaker  70 Nicholas L Smith  89   90   91 Kent D Taylor  34 Marilyn J Telen  92 Scott T Weiss  93 Yingze Zhang  85 Nancy Heard-Costa  94 Yan V Sun  40   41 Xihong Lin  9   95 L Adrienne Cupples  6 Leslie A Lange  7 Ching-Ti Liu  6 Ruth J F Loos  4   5   96 Kari E North  3 Anne E Justice  97
Collaborators, Affiliations

Whole genome sequencing analysis of body mass index identifies novel African ancestry-specific risk allele

Xinruo Zhang et al. Nat Commun. .

Abstract

Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9), including two secondary signals. Notably, we identified and replicated a novel low-frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.

PubMed Disclaimer

Conflict of interest statement

Competing interests: B.D.Ho. receives grant support from Bayer and has received an honorarium from AstraZeneca for an educational lecture. B.M.Ps. serve on the TOPMed Steering Committee. C.J.O. is employed by Novartis Institute of Biomedical Research, Cambridge, MA. D.L.D. received grants from Bayer and honoraria from Novartis. K.C.B. is an employee of Tempus. L.M.R. and S.S.R. are consultants for the TOPMed Administrative Coordinating Center (through Westat). U.P. was a consultant with AbbVie, and her husband is holding individual stocks for the following companies: BioNTech SE – ADR, Amazon, CureVac BV, NanoString Technologies, Google/Alphabet Inc Class C, NVIDIA Corp, Microsoft Corp. XLin is a consultant of AbbVie Pharmaceuticals and Verily Life Sciences. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Study population group composition.
A Pairwise scatter plots of the first three principal components (PCs) by population group. B The number and proportion of participants by population group. Our study population was composed of 88,873 participants from 15 population groups, 51% of which are non-European.
Fig. 2
Fig. 2. Summary of significant association findings.
A Manhattan plot of multi-population, single-variant analysis (N = 88,873 individuals). The novel locus (MTMR3) is highlighted in red. Previously reported BMI loci are in dark beige. The horizontal dashed line indicates the genome-wide significance threshold two-sided P = 5 × 10−9, to account for multiple testing. B Scatterplot showing the minor allele frequency compared to the absolute value of the estimated effect of the index variant at each significant locus. All effect estimates are from the primary analysis conducted across all population groups. Previously reported loci are highlighted in blue, while the novel locus is in red; circles represent the most significant variant at each locus, and triangles show newly reported secondary signals within known loci.
Fig. 3
Fig. 3. Forest plot of rs111490516 replication.
The forest plot, centered on effect estimates with 95% confidence intervals, is oriented on the BMI-increasing allele. Effect estimates are provided as standard deviation in BMI per allele. Standard errors and P-values of the effect estimates are provided in Supplementary Data 8.

Update of

  • WHOLE GENOME SEQUENCING ANALYSIS OF BODY MASS INDEX IDENTIFIES NOVEL AFRICAN ANCESTRY-SPECIFIC RISK ALLELE.
    Zhang X, Brody JA, Graff M, Highland HM, Chami N, Xu H, Wang Z, Ferrier K, Chittoor G, Josyula NS, Li X, Li Z, Allison MA, Becker DM, Bielak LF, Bis JC, Boorgula MP, Bowden DW, Broome JG, Buth EJ, Carlson CS, Chang KM, Chavan S, Chiu YF, Chuang LM, Conomos MP, DeMeo DL, Du M, Duggirala R, Eng C, Fohner AE, Freedman BI, Garrett ME, Guo X, Haiman C, Heavner BD, Hidalgo B, Hixson JE, Ho YL, Hobbs BD, Hu D, Hui Q, Hwu CM, Jackson RD, Jain D, Kalyani RR, Kardia SLR, Kelly TN, Lange EM, LeNoir M, Li C, Marchand LL, McDonald MN, McHugh CP, Morrison AC, Naseri T; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; O'Connell J, O'Donnell CJ, Palmer ND, Pankow JS, Perry JA, Peters U, Preuss MH, Rao DC, Regan EA, Reupena SM, Roden DM, Rodriguez-Santana J, Sitlani CM, Smith JA, Tiwari HK, Vasan RS, Wang Z, Weeks DE, Wessel J, Wiggins KL, Wilkens LR, Wilson PWF, Yanek LR, Yoneda ZT, Zhao W, Zöllner S, Arnett DK, Ashley-Koch AE, Barnes KC, Blangero J, Boerwinkle E, Burchard EG, Carson AP, Chasman DI, Chen YI, Curran JE, Fornage M, Gordeuk VR, He J, Heckbert SR, Hou L, Irvin MR, Kooperberg C, Minster RL, Mitchell BD, Nouraie M, Psaty BM, Raffield LM, Reiner AP, Rich SS, Rotter JI, Shoe… See abstract for full author list ➔ Zhang X, et al. medRxiv [Preprint]. 2023 Aug 22:2023.08.21.23293271. doi: 10.1101/2023.08.21.23293271. medRxiv. 2023. Update in: Nat Commun. 2025 Apr 11;16(1):3470. doi: 10.1038/s41467-025-58420-2. PMID: 37662265 Free PMC article. Updated. Preprint.

References

    1. Collaborators, G. B. D. O. et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med.377, 13–27 (2017). - PMC - PubMed
    1. Chong, B. et al. Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019. EClinicalMedicine57, 101850 (2023). - PMC - PubMed
    1. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med.28, 243–250 (2022). - PMC - PubMed
    1. Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet.23, 120–133 (2022). - PMC - PubMed
    1. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature518, 197–206 (2015). - PMC - PubMed

Grants and funding

LinkOut - more resources