Vision transformer based interpretable metabolic syndrome classification using retinal Images
- PMID: 40216912
- PMCID: PMC11992118
- DOI: 10.1038/s41746-025-01588-0
Vision transformer based interpretable metabolic syndrome classification using retinal Images
Abstract
Metabolic syndrome is leading to an increased risk of diabetes and cardiovascular disease. Our study developed a model using retinal image data from fundus photographs taken during comprehensive health check-ups to classify metabolic syndrome. The model achieved an AUC of 0.7752 (95% CI: 0.7719-0.7786) using retinal images, and an AUC of 0.8725 (95% CI: 0.8669-0.8781) when combining retinal images with basic clinical features. Furthermore, we propose a method to improve the interpretability of the relationship between retinal image features and metabolic syndrome by visualizing metabolic syndrome-related areas in retinal images. The results highlight the potential of retinal images in classifying metabolic syndrome.
© 2025. The Author(s).
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Figures





Similar articles
-
A Multi-Stage Approach for Cardiovascular Risk Assessment from Retinal Images Using an Amalgamation of Deep Learning and Computer Vision Techniques.Diagnostics (Basel). 2024 Apr 29;14(9):928. doi: 10.3390/diagnostics14090928. Diagnostics (Basel). 2024. PMID: 38732342 Free PMC article.
-
Multi-label classification of retinal diseases based on fundus images using Resnet and Transformer.Med Biol Eng Comput. 2024 Nov;62(11):3459-3469. doi: 10.1007/s11517-024-03144-6. Epub 2024 Jun 14. Med Biol Eng Comput. 2024. PMID: 38871856
-
Focused Attention in Transformers for interpretable classification of retinal images.Med Image Anal. 2022 Nov;82:102608. doi: 10.1016/j.media.2022.102608. Epub 2022 Sep 7. Med Image Anal. 2022. PMID: 36150271
-
MBT: Model-Based Transformer for retinal optical coherence tomography image and video multi-classification.Int J Med Inform. 2023 Oct;178:105178. doi: 10.1016/j.ijmedinf.2023.105178. Epub 2023 Aug 21. Int J Med Inform. 2023. PMID: 37657204
-
A Comprehensive Study of Retinal Vessel Classification Methods in Fundus Images.J Med Signals Sens. 2017 Apr-Jun;7(2):59-70. J Med Signals Sens. 2017. PMID: 28553578 Free PMC article. Review.
Cited by
-
Multi-task deep learning for predicting metabolic syndrome from retinal fundus images in a Japanese health checkup dataset.PLoS One. 2025 Aug 21;20(8):e0325337. doi: 10.1371/journal.pone.0325337. eCollection 2025. PLoS One. 2025. PMID: 40839585 Free PMC article.
References
Grants and funding
LinkOut - more resources
Full Text Sources