Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug;1871(6):167843.
doi: 10.1016/j.bbadis.2025.167843. Epub 2025 Apr 10.

Elucidation of the mechanism of carcinogenic transformation of human gastric epithelial cells in atrophic gastritis

Affiliations
Free article

Elucidation of the mechanism of carcinogenic transformation of human gastric epithelial cells in atrophic gastritis

Tomoyasu Yoshihiro et al. Biochim Biophys Acta Mol Basis Dis. 2025 Aug.
Free article

Abstract

Background: Helicobacter pylori infection and subsequent atrophic gastritis (AG) and intestinal metaplasia (IM) are regarded as precursor conditions for gastric cancer (GC). Though diverse mechanisms of carcinogenesis from AG and IM have been clarified using mouse models, few studies using human models have been reported. Here, we describe in vitro modeling of IM, as well as in vivo modeling of the oncogenic transformation from AG using human gastric organoids.

Methods: Organoids derived from patients with AG were established and characterized by immunohistochemistry and in situ hybridization. Niche factor withdrawal and genetic engineering using CRISPR/Cas9 were conducted for modeling IM, and manipulated organoids were xenografted subcutaneously in mice to establish a GC model.

Results: AG organoids (AGOs) were maintained by Wnt niche factors; withdrawal of these factors led to differentiation toward foveolar cells. Knockout of Runt-related transcription factor 3 (RUNX3), or activation of bone morphogenetic protein (BMP) signaling, resulted in accumulation of the key IM markers caudal-type homeobox 2 (CDX2) and mucin 2 (MUC2) in AGOs; disruption of SMAD4 counteracted the induction of these markers. Organoids doubly deficient for TP53 and SMAD4 formed larger and more proliferative p21 -negative subcutaneous tumors than did RUNX3-deficient organoids, suggesting that induction of a senescent state is a key barrier in stepwise carcinogenesis from AG.

Conclusions: Wnt signaling is essential for homeostasis of AG, and SMAD4-dependent activation of BMP signaling promotes intestinal differentiation. Combined disruption of TP53 and SMAD4 confers tumorigenic potential to AGOs by inhibiting p21 induction.

Keywords: Atrophic gastritis; Bone morphogenetic proteins; Gastric cancer; Intestinal metaplasia; Organoids; Wnt signaling pathway.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

MeSH terms

Substances

LinkOut - more resources