Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug;182(15):3669-3687.
doi: 10.1111/bph.70034. Epub 2025 Apr 13.

Vitamin D deficiency induces erectile dysfunction: Role of superoxide and Slpi

Affiliations

Vitamin D deficiency induces erectile dysfunction: Role of superoxide and Slpi

Miguel A Olivencia et al. Br J Pharmacol. 2025 Aug.

Abstract

Background and purpose: Epidemiological studies suggest a relationship between vitamin D deficiency and erectile dysfunction (ED). We hypothesized that vitamin D deficiency or vitamin D receptor (VDR) knockout causes ED and analysed the underlying molecular mechanisms.

Experimental approach: Erectile function was assessed in vivo in anaesthetized male mice or rats by evaluating intracavernosal pressure (ICP) and in vitro in male Vdr-/- mice, and rat or human isolated corpora cavernosa (CCs) mounted in a myograph. Bulk RNA-sequencing (RNA-seq) transcriptomic analysis was performed in rat CCs. Vitamin D deficiency was induced in rats fed a vitamin D-free diet for 5 months.

Key results: CCs from human donors with low plasma vitamin D exhibited reduced nitric oxide (NO)-dependent erectile function. This ED was also reproduced in vitamin D-deficient rats and VDR knockout mice, in vivo and ex vivo, and is associated with penile fibrosis and reduced response to the phosphodiesterase 5 inhibitor (PDE5i) sildenafil. CCs from deficient rats show increased superoxide levels, and their impaired erectile function was restored by superoxide scavengers. Transcriptomic analysis, real-time polymerase chain reaction (RT-PCR) and Western blot showed down-regulated secretory leukocyte protease inhibitor (Slpi). Moreover, recombinant SLPI prevented superoxide-induced ED, while Slpi gene silencing led to reduced erectile function in a superoxide-dependent manner.

Conclusion and implications: Vitamin D deficiency or VDR knockout reduces erectile function. We suggest that this effect is mediated by increased superoxide levels and down-regulation of SLPI. Vitamin D deficiency might be an aetiological factor for vascular ED and for the therapeutic failure of PDE5i.

Keywords: SLPI; corpora cavernosa; erectile dysfunction; nitric oxide; superoxide; vitamin D deficiency.

PubMed Disclaimer

References

REFERENCES

    1. Abramovitch, S., Dahan‐Bachar, L., Sharvit, E., Weisman, Y., Ben Tov, A., Brazowski, E., & Reif, S. (2011). Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide‐induced liver fibrosis in rats. Gut, 60(12), 1728–1737. https://doi.org/10.1136/gut.2010.234666
    1. Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., Al‐Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British journal of pharmacology, 180, S23–S144. https://doi.org/10.1111/bph.16177
    1. Alexander, S. P. H., Cidlowski, J. A., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Coons, L., Fuller, P. J., Korach, K. S., & Young, M. J. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Nuclear hormone receptors. British Journal of Pharmacology, 180(S2), S223–S240. https://doi.org/10.1111/bph.16179
    1. Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The concise guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181
    1. Alexander, S. P. H., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Buneman, O. P., Faccenda, E., Harding, S. D., Spedding, M., Cidlowski, J. A., Fabbro, D., Davenport, A. P., Striessnig, J., Davies, J. A., Ahlers‐Dannen, K. E., Alqinyah, M., Arumugam, T. V., Bodle, C., … Zolghadri, Y. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Introduction and Other Protein Targets. British Journal of Pharmacology, 180, S1–S22. https://doi.org/10.1111/bph.16176

LinkOut - more resources