Effect of stress on neuronal cell: Morphological to molecular approach
- PMID: 40222791
- DOI: 10.1016/bs.pbr.2025.01.010
Effect of stress on neuronal cell: Morphological to molecular approach
Abstract
Stress can be characterized as any perceived or actual threat that necessitates compensatory actions to maintain homeostasis. It can alter an organism's behavior over time by permanently altering the composition and functionality of brain circuitry. The amygdala and prefrontal cortex are two interrelated brain regions that have been the focus of initial research on stress and brain structural and functional plasticity, with the hippocampus serving as the entry point for most of this knowledge. Prolonged stress causes significant morphological alterations in important brain regions such as the hippocampus, amygdala, and prefrontal cortex. Memory, learning, and emotional regulation are among the cognitive functions that are adversely affected by these changes, including neuronal shrinkage, dendritic retraction, and synaptic malfunction. Stress perturbs the equilibrium of neurotransmitters, neuronal plasticity, and mitochondrial function at the molecular level. On the other hand, chronic stress negatively impacts physiology and can result in neuropsychiatric diseases. Recent molecular research has linked various epigenetic processes, such as DNA methylation, histone modifications, and noncoding RNAs, to the dysregulation of genes in the impacted brain circuits responsible for the pathophysiology of chronic stress. Numerous disorders, including neurodegenerative diseases (NDDs) including Alzheimer's, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, multiple sclerosis, and Parkinson's disease, have been linked to oxidative stress as a possible cause.
Keywords: Dendritic atrophy; Mitochondrial dysfunction; Oxidative stress; Stress; Synaptic plasticity.
Copyright © 2025. Published by Elsevier B.V.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
