Genomic analysis of carbapenemase-encoding plasmids and antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae isolates from Vietnam, 2021
- PMID: 40231682
- PMCID: PMC12054150
- DOI: 10.1128/spectrum.03115-24
Genomic analysis of carbapenemase-encoding plasmids and antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae isolates from Vietnam, 2021
Abstract
Carbapenem resistance in gram-negative rods is increasing in low- and middle-income countries. We conducted a single-center study to identify carbapenemase-encoding plasmids in carbapenem-resistant Klebsiella pneumoniae isolates causing human infections in Vietnam. The secondary objective was to investigate the prevalence of multidrug-resistant (MDR) and hypervirulent K. pneumoniae in this setting. Our genomic analysis study characterized 105 of 245 clinical K. pneumoniae isolates at the 108 Military Hospital in Hanoi, Vietnam, collected from intensive care unit and regular wards between 1 January 2021 and 31 December 2021. All isolates were characterized using long- and short-read sequencing, followed by hybrid assembly. Comprehensive genomic analysis was performed to identify carbapenemase-encoding plasmids, complemented by extended antibiotic susceptibility testing for commonly used and novel antibiotics. We observed a high prevalence of NDM-4-related carbapenem resistance (30.5%, 32/105) mostly carried by a specific 83-kb IncFII plasmid co-carrying the blaTEM-1 (46.9%, 15/32). The genomic content of the blaNDM-4-harboring plasmids is highly variable. While blaOXA-181 and blaOXA-48 were predominantly located on an IncX3 and an IncL plasmid, respectively, the majority of plasmids harboring blaKPC-2 were not related to any named Inc-type. All isolates exhibited the MDR phenotype; however, the majority remained susceptible to the siderophore-cephalosporin cefiderocol (79%, 83/105). All isolates were susceptible to aztreonam/avibactam. In addition, we identified a hypervirulent, carbapenem-resistant K. pneumoniae ST23 strain, confirmed through both in vitro and in vivo experiments. Our study provides insights into plasmids harboring the carbapenemases New Delhi metallo-β-lactamase, oxacillinase-48 like, and K. pneumoniae carbapenemase-2 circulating in Vietnam.IMPORTANCECarbapenem resistance in Klebsiella pneumoniae is a major public health threat, especially in low- and middle-income countries. This study examined resistant strains from a hospital in Vietnam to understand how they spread and which antibiotics might still work. We found that a significant number of these bacteria carried resistance genes on different types of plasmids. Despite their resistance to many antibiotics, most strains remained susceptible to newer substances like cefiderocol and aztreonam/avibactam. Alarmingly, we also identified a hypervirulent strain that is carbapenem resistant, potentially posing an even greater risk to patients. This research provides insight into the epidemiology of the carbapenemase gene-harboring plasmids in a Vietnamese hospital. Understanding these resistance patterns can help guide antibiotic use and policy decisions to combat the growing threat of multidrug-resistant infections in Vietnam.
Keywords: KPC-2; NDM-4; OXA-48; Vietnam; carbapenemase-producing Klebsiella pneumoniae; hypervirulent Klebsiella pneumoniae.
Conflict of interest statement
D.N. received speaker's honoraria from Shionogi and Cepheid outside the scope of this work. All other authors have no conflicts of interest.
Figures





References
-
- Cocker D, Chidziwisano K, Mphasa M, Mwapasa T, Lewis JM, Rowlingson B, Sammarro M, Bakali W, Salifu C, Zuza A, et al. . 2023. Investigating One Health risks for human colonisation with extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Malawian households: a longitudinal cohort study. Lancet Microbe 4:e534–e543. doi:10.1016/S2666-5247(23)00062-9 - DOI - PMC - PubMed
-
- Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC, Gomi R, Abbott IJ, Thomson NR, Strugnell RA, Pratt NF, Garlick JS, Watson KM, Hunter PC, Pilcher DV, McGloughlin SA, Spelman DW, Wyres KL, Jenney AWJ, Holt KE. 2022. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun 13:3017. doi:10.1038/s41467-022-30717-6 - DOI - PMC - PubMed
-
- Heiden SE, Hübner N-O, Bohnert JA, Heidecke C-D, Kramer A, Balau V, Gierer W, Schaefer S, Eckmanns T, Gatermann S, Eger E, Guenther S, Becker K, Schaufler K. 2020. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med 12:113. doi:10.1186/s13073-020-00814-6 - DOI - PMC - PubMed
-
- Shaidullina ER, Schwabe M, Rohde T, Shapovalova VV, Dyachkova MS, Matsvay AD, Savochkina YA, Shelenkov AA, Mikhaylova YV, Sydow K, et al. . 2023. Genomic analysis of the international high-risk clonal lineage Klebsiella pneumoniae sequence type 395. Genome Med 15:9. doi:10.1186/s13073-023-01159-6 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources