This is a preprint.
Transcriptional downregulation of rhodopsin is associated with desensitization of rods to light-induced damage in a murine model of retinitis pigmentosa
- PMID: 40236225
- PMCID: PMC11996569
- DOI: 10.1101/2025.04.03.646684
Transcriptional downregulation of rhodopsin is associated with desensitization of rods to light-induced damage in a murine model of retinitis pigmentosa
Abstract
Class I rhodopsin mutations are known for some of the most severe forms of vision impairments in dominantly inherited rhodopsin retinitis pigmentosa. They disrupt the VxPx transport signal, which is required for the proper localization of rhodopsin to the outer segments. While various studies have focused on the light-dependent toxicity of mutant rhodopsin, it remains unclear whether and how these mutations exert dominant-negative effects. Using the class I Rho Q344X rhodopsin knock-in mouse model, we characterized the expression of rhodopsin and other genes by RNA sequencing and qPCR. Those studies indicated that rhodopsin is the most prominently downregulated photoreceptor-specific gene in Rho Q344X/+ mice. Rhodopsin is downregulated significantly prior to the onset of rod degeneration, whereas downregulation of other phototransduction genes, transducin α , and Pde6α, occurs after the onset and correlate with the degree of rod cell loss. Those studies indicated that the mutant rhodopsin gene causes downregulation of wild-type rhodopsin, imposing an mRNA-level dominant negative effect. Moreover, it causes downregulation of the mutant mRNA itself, mitigating the toxicity. The observed dominant effect is likely common among rhodopsin retinitis pigmentosa as we found a similar rhodopsin downregulation in the major class II rhodopsin mutant model, Rho P23H/+ mice, in which mutant rhodopsin is prone to misfold. Potentially due to mitigated toxicity by reduced rhodopsin expression, Rho Q344X/+ mice did not exhibit light-dependent exacerbation of rod degeneration, even after continuous exposure of mice for 5 days at 3000 lux. Thus, this study describes a novel form of dominant negative effect in inherited neurodegenerative disorders.
Similar articles
-
Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model.FASEB J. 2024 Apr 30;38(8):e23606. doi: 10.1096/fj.202302260RR. FASEB J. 2024. PMID: 38648465 Free PMC article.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Sexual Harassment and Prevention Training.2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
-
P23H rhodopsin accumulation causes transient disruptions to synaptic protein levels in rod photoreceptors in a model of retinitis pigmentosa.Dis Model Mech. 2025 Jun 1;18(6):dmm052256. doi: 10.1242/dmm.052256. Epub 2025 Jun 23. Dis Model Mech. 2025. PMID: 40462724 Free PMC article.
-
Prevalence Estimates and Genetic Diversity for Autosomal Dominant Retinitis Pigmentosa Due to RHO, c.68C>A (p.P23H) Variant.Am J Ophthalmol. 2024 Dec;268:340-347. doi: 10.1016/j.ajo.2024.08.038. Epub 2024 Sep 14. Am J Ophthalmol. 2024. PMID: 39278389
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources